-
Free Radic. Biol. Med. · Apr 2015
Limb ischemic preconditioning protects against contrast-induced acute kidney injury in rats via phosphorylation of GSK-3β.
- Tongqiang Liu, Yi Fang, Shaopeng Liu, Xiaofang Yu, Hui Zhang, Mingyu Liang, and Xiaoqiang Ding.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Division of Nephrology, the Affiliated Changzhou No. 2 Hospital of Nanjing Medical College, Changzhou 213003, Jiangsu, China.
- Free Radic. Biol. Med. 2015 Apr 1; 81: 170-82.
AbstractContrast-induced acute kidney injury (CI-AKI) resulting from the use of intravascular iodinated contrast media for diagnostic and interventional cardiovascular procedures is associated with substantial morbidity and mortality. Despite preventative measures intended to mitigate the risk of CI-AKI, there remains a need for a novel and effective therapeutic approach. Limb ischemic preconditioning (LIPC), where short-term ischemia/reperfusion is applied to an arm prior to administration of the contrast agent, has been shown in several trials to preserve renal function in patients at high risk for CI-AKI. However, the underlying mechanism by which this procedure provides renoprotection against contrast media insults is not known. Here, we explored the molecular mechanism(s) of LIPC-induced protection of the kidneys from CI-AKI, particularly the role of phosphorylated glycogen synthase kinase-3β (GSK-3β). We used a novel CI-AKI model consisting of 5/6 nephrectomized (NE) rats at 6 weeks after the ablative surgery. LIPC- or sham-treated rats were administered iohexol (10 ml/kg, 3.5 gI) via the tail vein. The results showed that LIPC protected the kidneys against iohexol-induced injury. This protective effect was accompanied by the attenuation of renal dysfunction, tubular damage, apoptosis, mitochondrial swelling, oxidative stress, and inflammation. Furthermore, LIPC-induced renoprotection was blocked via treatment with inhibitors of PI3K (wortmannin or LY294002), but not ERK (U0126 or PD98059). LIPC also increased the protein expression levels of phospho-Akt, phospho-GSK-3β, and nuclear Nrf2, and decreased the levels of nuclear NF-κB. A specific GSK-3β inhibitor (SB216763) mimicked this effect of LIPC, by inhibiting the opening of the mitochondrial permeability transition pore and reducing the levels of oxidative stress and inflammation via activation of Nrf2 and suppression of NF-κB. The above results demonstrate that LIPC induces protection against CI-AKI, making this procedure a promising strategy for preventing CI-AKI. In particular, this renoprotective effect involves the phosphorylation of GSK-3β.Copyright © 2014 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.