• J. Appl. Physiol. · Nov 2014

    Comparative Study

    Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI.

    • Jasper Verbree, Anne-Sophie G T Bronzwaer, Eidrees Ghariq, Maarten J Versluis, Mat J A P Daemen, Mark A van Buchem, Albert Dahan, Johannes J van Lieshout, and Matthias J P van Osch.
    • Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; j.verbree@lumc.nl.
    • J. Appl. Physiol. 2014 Nov 15; 117 (10): 1084-9.

    AbstractIn the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO2 partial pressure. However, the strong cerebral vasodilatory capacity of CO2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal P(CO2) (PET(CO2)) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PET(CO2) measurements. In conclusion, the MCA diameter remains constant during small deviations of the PET(CO2) from normocapnia, but increases at higher PET(CO2) values.Copyright © 2014 the American Physiological Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…