• Technol. Cancer Res. Treat. · Dec 2016

    Normal Brain Sparing With Increasing Number of Beams and Isocenters in Volumetric-Modulated Arc Beam Radiosurgery of Multiple Brain Metastases.

    • Sabbir Hossain, Vance Keeling, Kimberly Hildebrand, Salahuddin Ahmad, David A Larson, Arjun Sahgal, and Lijun Ma.
    • Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
    • Technol. Cancer Res. Treat. 2016 Dec 1; 15 (6): 766-771.

    AbstractRecent studies have reported about the application of volumetric-modulated arc radiotherapy in the treatment of multiple brain metastases. One of the key concerns for these radiosurgical treatments lies in the integral dose within the normal brain tissue, as it has been shown to increase with increasing number of brain tumors treated. In this study, we investigate the potential to improve normal brain tissue sparing specific to volumetric-modulated arc radiotherapy by increasing the number of isocenters and arc beams. Adopting a multi-institutional benchmark study protocol of planning multiple brain metastases via a radiosurgical apparatus, a flattening filter-free TrueBeam RapidArc delivery system (Varian Oncology, Palo Alto, California) was used for a volumetric-modulated arc radiotherapy treatment planning study, where treatment plans for target combinations of N = 1, 3, 6, 9, and 12 targets were developed with increasing numbers of isocenters and arc beams. The treatment plans for each target combination were compared dosimetrically among each other and against the reference Gamma Knife treatment plan from the original benchmark study. We observed that as the number of isocenters or arc beams increased, the normal brain isodose volumes such as 12- to 4-Gy on average decreased by up to 15% for all the studied cases. However, when the best volumetric-modulated arc radiotherapy normal brain isodose volumes were compared against the corresponding reference Gamma Knife values, volumetric-modulated arc radiotherapy remained 100% to 200% higher than those of Gamma Knife for all target combinations. The study results, particularly for the solitary (N = 1) metastases case, directly challenged the general notion of dose equivalence among current radiosurgical modalities. In conclusion, multiple isocenter and multiple arc beam delivery solutions are capable of decreasing normal brain irradiation exposure for volumetric-modulated arc radiotherapy. However, there is further technological development in need for volumetric-modulated arc radiotherapy before similar dosimetric treatment plans could be achievable when compared to Gamma Knife radiosurgery.© The Author(s) 2015.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…