-
- Ziyan Guo, Martin Chun-Wing Leong, Hao Su, Ka-Wai Kwok, Danny Tat-Ming Chan, and Wai-Sang Poon.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
- World Neurosurg. 2018 Aug 1; 116: 77-87.
AbstractThe development of stereotaxy can be dated back 100 years. However, most stereotactic neurosurgery still relies on the workflow established about half a century ago. With the arrival of computer-assisted navigation, numerous studies to improve the neurosurgical technique have been reported, leading to frameless and magnetic resonance imaging (MRI)-guided/verified techniques. Frameless stereotaxy has been proved to be comparable to frame-based stereotaxy in accuracy, diagnostic yield, morbidity, and mortality. The incorporation of intraoperative MRI guidance in frameless techniques is considered an appealing method that could simplify workflow by reducing coregistration errors in different imaging modalities, conducting general anesthesia, and monitoring the surgical progress. In light of this situation, manually operated platforms have emerged for MRI-guided frameless procedures. However, these procedures could still be complicated and time-consuming because of the intensive manual operation required. To further simplify the procedure and enhance accuracy, robotics was introduced. Robots have superior capabilities over humans in certain tasks, especially those that are limited by space, accuracy demanding, intensive, and tedious. Clinical benefits have been shown in the recent surge of robot-assisted surgical interventions. We review the state-of-the-art intraoperative MRI-guided robotic platforms for stereotactic neurosurgery. To improve the surgical workflow and achieve greater clinical penetration, 3 key enabling techniques are proposed with emphasis on their current status, limitations, and future trends.Copyright © 2018 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.