• Respiratory medicine · Mar 2006

    Changes in respiratory mechanics with increasing degrees of airway obstruction in COPD: detection by forced oscillation technique.

    • Ana Maria G T Di Mango, Agnaldo J Lopes, José M Jansen, and Pedro L Melo.
    • Biomedical Instrumentation Laboratory, Institute of Biology and Faculty of Engineering, Brazil. amdimango@hotmail.com
    • Respir Med. 2006 Mar 1; 100 (3): 399-410.

    AbstractThe Forced Oscillation Technique (FOT) is a method for non-invasively assessing respiratory mechanics during spontaneous breathing, demanding little cooperation. The aim of this study was to test the ability of FOT to describe the changes in respiratory mechanics in progressive COPD. The study was performed in a control group formed by 21 healthy subjects and 79 outpatients with COPD, which were classified by spirometry, according to the degree of airway obstruction, in mild, moderate and severe groups. Resistive impedance data were submitted to linear regression analysis over the 4-16 Hz frequency range, which yielded the total respiratory system resistance extrapolated at 0 Hz (R0), the respiratory system conductance (Grs), mean respiratory resistance (Rm), and the resistance/frequency slope (S). Reactance data were interpreted using the mean values (Xm) over the 4-32 Hz frequency range, the dynamic compliance (Crs,dyn), the dynamic elastance (E(rs,dyn)), and the resonant frequency (fr) data. Considering the control and mild groups, the increase of airway obstruction resulted in a significant increase of R0 (P<0.008), Rm (P<0.001), and a significant reduction in Grs (P<0.002). Reactive parameters, Crs, dyn and Ers,dyn also presented significant modifications. The subsequent increase (mild to moderate) showed a significant raise of R(0) (P<0.007), S (P<0.001), and a reduction in Grs (P<0.015), while significant increases in Xrs (P<0.001), and Ers,dyn (P<0.02), and also a reduction in Crs, dyn (P<0.02) were also observed. In contrast to earlier stages, in the late stage of the airway obstruction increase (moderate to severe obstruction), resistive parameters did not present statistically significant modifications, while significant modifications were observed in Xrs (P<0.02), Crs, dyn (P<0.003) and Ers,dyn (P<0.003). The results of this study demonstrated that the FOT is useful for detecting the respiratory mechanics modifications in COPD patients. The initial phases of airway obstruction in COPD can be described mainly by resistive parameters, while in more advanced phases, reactive parameters seem to be more useful. Since the FOT has the advantage of being a simple method, such a technique may give a significant clinical contribution, representing an alternative and/or complement to the evaluation of respiratory mechanics by means of forced expiration.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.