• J Am Soc Echocardiogr · Sep 2001

    Comparative Study

    Jet eccentricity: a misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis.

    • M D VanAuker, M Chandra, J Shirani, and J A Strom.
    • Department of Medicine, State University of New York Health Science Center at Brooklyn, New York, USA. vanauker@eng.usf.edu
    • J Am Soc Echocardiogr. 2001 Sep 1; 14 (9): 853-62.

    AbstractCharacterization of the severity of aortic stenosis relies on accurate measurement of the pressure gradient across the valve and the valve area. Pressure gradients measured by Doppler ultrasound based on the clinical form of the Bernoulli equation often overestimate pressure gradients by catheter as the result of pressure recovery. Doppler techniques measure the velocity of the vena contracta of the stenotic jet. This corresponds to the maximal pressure gradient and the minimal effective valve area. Pressure recovery can be characterized by analysis of the spread of the stenotic jet downstream of the valve as it fills the aorta and should be influenced by the shape of the velocity profile of the decaying jet. In this study, we addressed the hypothesis that the site of complete pressure recovery (the point at which the jet fully expands to the size of the aorta), the effective valve area, and the maximal pressure gradient are affected by jet eccentricity. To accomplish this, we developed a computational model of aortic stenosis that provides detailed velocity and pressure information in the vicinity of the valve. The results show that the width of the eccentric wall jet decreased and maximal velocity increased with greater jet eccentricity. Furthermore, for a constant anatomic area, the effective valve area decreased, the distance to complete pressure recovery increased, and the maximal pressure gradient increased with the degree of eccentricity. Failure to take this into account could fortuitously drive Doppler and catheter measurements toward agreement because the distal pressure sensor will not record the fully recovered pressure. Therefore the pressure gradient across a stenotic valve depends on jet eccentricity. The spread of the wall jet after attachment must be characterized to develop a robust method for the prediction of pressure recovery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.