• Clin Trials · Feb 2009

    Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials.

    • Ashley P Jones, Richard D Riley, Paula R Williamson, and Anne Whitehead.
    • Centre for Medical Statistics and Health Evaluation, School of Health Sciences, University of Liverpool, Brownlow Street, Liverpool, L69 3GS, UK. apjones@liverpool.ac.uk.
    • Clin Trials. 2009 Feb 1; 6 (1): 16-27.

    BackgroundIn clinical trials following individuals over a period of time, the same assessment may be made at a number of time points during the course of the trial. Our review of current practice for handling longitudinal data in Cochrane systematic reviews shows that the most frequently used approach is to ignore the correlation between repeated observations and to conduct separate meta-analyses at each of a number of time points.PurposeThe purpose of this paper is to show the link between repeated measurement models used with aggregate data and those used when individual patient data (IPD) are available, and provide guidance on the methods that practitioners might use for aggregate data meta-analyses, depending on the type of data available.MethodsWe discuss models for the meta-analysis of longitudinal continuous outcome data when IPD are available. In these models time is included either as a factor or as a continuous variable, and account is taken of the correlation between repeated observations. The meta-analysis of IPD can be conducted using either a one-step or a two-step approach: the latter involves analysing the IPD separately in each study and then combining the study estimates taking into account their covariance structure. We discuss the link between models for use with aggregate data and the two-step IPD approach, and the problems which arise when only aggregate data are available. The methods are applied to IPD from 5 trials in Alzheimer's disease.ResultsTwo major issues for the meta-analysis of aggregate data are the lack of information about correlation coefficients and the effect of missing data at the patient-level. Application to the Alzheimer's disease data set shows that ignoring correlation can lead to different pooled estimates of the treatment difference and their standard errors. Furthermore, the amount of missing data at the patient level can affect these estimates.LimitationsThe models assume fixed treatment effects across studies, and that any missing data is missing at random, both at the patient-level and the study level.ConclusionsIt is preferable to obtain IPD from all studies to correctly account for the correlation between repeated observations. When IPD are not available, the ideal aggregate data are model-based estimates of treatment difference and their variance and covariance estimates. If covariance estimates are not available, sensitivity analyses should be undertaken to investigate the robustness of the results to different amounts of correlation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.