• J. Surg. Res. · Feb 2002

    Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion.

    • Juan A Crestanello, Nicolai M Doliba, Natalia M Doliba, Andriy M Babsky, Koki Niborii, Mary D Osbakken, and Glenn J R Whitman.
    • Division of Cardiothoracic Surgery, University of Maryland Medical System, Baltimore, Maryland, USA. crestanello.juan@mayo.edu
    • J. Surg. Res. 2002 Feb 1; 102 (2): 221-8.

    BackgroundCoenzyme Q10 (CoQ10) protects myocardium from ischemia-reperfusion (IR) injury as evidenced by improved recovery of mechanical function, ATP, and phosphocreatine during reperfusion. This protection may result from CoQ10's bioenergetic effects on the mitochondria, from its antioxidant properties, or both. The purpose of this study was to elucidate the effects of CoQ10 supplementation on mitochondrial function during myocardial ischemia-reperfusion using an isolated mitochondrial preparation.MethodsIsolated hearts (n = 6/group) from rats pretreated with liposomal CoQ10 (10 mg/kg iv, CoQ10), vehicle (liposomal only, Vehicle), or saline (Saline) 30 min before the experiments were subjected to 15 min of equilibration (EQ), 25 min of ischemia (I), and 40 min of reperfusion (RP). Left ventricular-developed pressure (DP) was measured. Mitochondria were isolated at end-equilibration (end-EQ), at end-ischemia (end-I), and at end-reperfusion (end-RP). Mitochondrial respiratory function (State 2, 3, and 4, respiratory control index (RCI, ratio of State 3 to 4), and ADP:O ratio) was measured by polarography using NADH (alpha-ketoglutarate, alpha-KG)- or FADH (succinate, SA)-dependent substrates.ResultsCoQ10 improved recovery of DP at end-RP (67 +/- 11% in CoQ10 vs 47 +/- 5% in Vehicle and 50 +/- 11% in Saline, P < 0.05 vs Vehicle and Saline). CoQ10 did not change preischemic mitochondrial function. IR decreased State 3 and RCI in all groups using either substrate. CoQ10 had no effect in the mitochondrial oxidation of alpha-KG at end-I. CoQ10 improved State 3 at end-I when SA was used (167 +/- 21 in CoQ10 vs 120 +/- 10 in Saline and 111 +/- 10 ng-atoms O/min/mg protein in Vehicle, P < 0.05). Using alpha-KG as a substrate, CoQ10 improved RCI at end-RP (4.2 +/- 0.2 in CoQ10 vs 3.2 +/- 0.2 in Saline and 3.0 +/- 0.3 in Vehicle, P < 0.05). Using SA, CoQ10 improved State 3 (181 +/- 10 in CoQ10 vs 142 +/- 9 in Saline and 140 +/- 12 ng-atoms O/min/mg protein in Vehicle, P < 0.05) and RCI (2.21 +/- 0.06 in CoQ10 vs 1.85 +/- 0.11 in Saline and 1.72 +/- 0.08 in Vehicle, P < 0.05) at end-RP.ConclusionsThe cardioprotective effects of CoQ10 can be attributed to the preservation of mitochondrial function during reperfusion as evidenced by improved FADH-dependent oxidation.(c)2001 Elsevier Science.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…