• J Neural Transm · Jun 2016

    Review

    Disease-specific longevity of impulse generators in deep brain stimulation and review of the literature.

    • Christoph van Riesen, Georg Tsironis, Doreen Gruber, Fabian Klostermann, Patricia Krause, Gerd Helge Schneider, and Andreas Kupsch.
    • Department of Neurology & Neurosurgery, Charite University Medicine Berlin, Campus Virchow Klinikum & Benjamin Franklin, Berlin, Germany.
    • J Neural Transm. 2016 Jun 1; 123 (6): 621-30.

    AbstractDeep brain stimulation (DBS) represents an established and internationally approved therapy for movement disorders. In the present retrospective analysis, we evaluated disease-specific longevity of dual channel impulse generators (IPG) used in different movement disorders. We correlated the battery lifetime with electrical stimulation settings, "total electrical energy delivered" (TEED), stimulation modi (monopolar, double monopolar and bipolar) and targets. Specifically, we reviewed the longevity and stimulation settings of 464 IPGs implanted between 1996 until 2011 in a single university center. Disease entities comprised Parkinson's disease (PD, n = 257), dystonia (n = 130) and essential tremor (ET, n = 50). Further subanalyses aimed at assessing differential longevity in different subtypes of PD and dystonia. The main finding relates to longer IPG longevity in ET (thalamic DBS) and PD (subthalamic DBS) vs. dystonia (pallidal DBS; 71.9 ± 6.7 vs. 51.5 ± 2.3 vs. 37 ± 2 months). In PD the tremor-dominant type was associated with a significant shorter battery survival than in the akinetic-rigid type without tremor or the "balanced" type with tremor, bradykinesia and rigidity (38.8 ± 3.9 vs. 53.6 ± 3.4 vs. 58.8 ± 4.1 months), while there were no significant differences in longevity between the subtypes of dystonia. Frequency, amplitude, pulse widths and TEED correlated inversely with battery lifetime. Pallidal DBS in dystonia is associated with a shorter lifetime of IPGs than subthalamic or thalamic DBS for PD or ET. The present results may contribute to the rapidly evolving refinement of DBS devices. Future studies that assess energy consumption both in patients with and without IPG replacement could help to avoid potential underestimation of longevity of IPGs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…