-
Multicenter Study Observational Study
Manual centile-based early warning scores derived from statistical distributions of observational vital-sign data.
- Peter J Watkinson, PimentelMarco A FMAFInstitute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK. Electronic address: marco.pimentel@eng.ox.ac.uk., David A Clifton, and Lionel Tarassenko.
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, OX3 9DU Oxford, UK.
- Resuscitation. 2018 Aug 1; 129: 556055-60.
Aims Of StudyTo develop and validate a centile-based early warning score using manually-recorded data (mCEWS). To compare mCEWS performance with a centile-based early warning score derived from continuously-acquired data (from bedside monitors, cCEWS), and with other published early warning scores.Materials And MethodsWe used an unsupervised approach to investigate the statistical properties of vital signs in an in-hospital patient population and construct an early-warning score from a "development" dataset. We evaluated scoring systems on a separate "validation" dataset. We assessed the ability of scores to discriminate patients at risk of cardiac arrest, unanticipated intensive care unit admission, or death, each within 24 h of a given vital-sign observation, using metrics including the area under the receiver-operating characteristic curve (AUC).ResultsThe development dataset contained 301,644 vital sign observations from 12,153 admissions (median age (IQR): 63 (49-73); 49.2% females) March 2014-September 2015. The validation dataset contained 1,459,422 vital-sign observations from 53,395 admissions (median age (IQR): 68 (48-81), 51.4% females) October 2015-May 2017. The AUC (95% CI) for the mCEWS was 0.868 (0.864-0.872), comparable with the National EWS, 0.867 (0.863-0.871), and other recently proposed scores. The AUC for cCEWS was 0.808 (95% CI, 0.804-0.812). The improvement in performance in comparison to the continuous CEWS was mainly explained by respiratory rate threshold differences.ConclusionsPerformance of an EWS is highly dependent on the database from which itis derived. Our unsupervised statistical approach provides a straightforward, reproducible method to enable the rapid development of candidate EWS systems.Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.