• Neurobiology of disease · Feb 2004

    Excitotoxic degeneration of hypothalamic orexin neurons in slice culture.

    • Hiroshi Katsuki and Akinori Akaike.
    • Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Sakyo, Japan.
    • Neurobiol. Dis. 2004 Feb 1; 15 (1): 61-9.

    AbstractSeveral lines of evidence indicate that narcolepsy, a sleep disorder, results from the loss of hypothalamic orexin (hypocretin)-containing neurons, but the mechanisms responsible for selective elimination of this neuronal population are unknown. Using organotypic rat hypothalamic slice cultures, we investigated vulnerability of orexin neurons to excitotoxic insults. Twenty-four hours of incubation with N-methyl-D-aspartate (NMDA) followed by a recovery period of 72 h resulted in a marked decrease in the number of orexin-immunoreactive neurons, whereas melanin-concentrating hormone (MCH)-immunoreactive neurons in the same cultures were relatively spared. In contrast, orexin neurons were more resistant to kainic acid cytotoxicity than MCH neurons. Examinations of the effects of several endogenous glutamate receptor agonists as well as a glutamate transporter blocker highlighted quinolinic acid as an endogenous excitotoxin that could cause selective loss of orexin neurons as compared to MCH neurons by activating NMDA receptors. In addition, quinolinic acid-induced decrease of orexin neurons was prevented by an inhibitor of poly(ADP-ribose) polymerases. These results provide the first evidence concerning cytotoxic consequences onto orexin neurons, and indicate that NMDA receptor-mediated injury may contribute to the selective loss of these neurons in the hypothalamus, a prominent neuropathological feature found in narcolepsy patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.