• J Neurosurg Spine · Jun 2017

    Multicenter Study

    Development of a preoperative predictive model for major complications following adult spinal deformity surgery.

    • Justin K Scheer, Justin S Smith, Frank Schwab, Virginie Lafage, Christopher I Shaffrey, Shay Bess, Alan H Daniels, Robert A Hart, Themistocles S Protopsaltis, Gregory M Mundis, Daniel M Sciubba, Tamir Ailon, Douglas C Burton, Eric Klineberg, Christopher P Ames, and International Spine Study Group.
    • School of Medicine, University of California, San Diego, La Jolla, California.
    • J Neurosurg Spine. 2017 Jun 1; 26 (6): 736-743.

    AbstractOBJECTIVE The operative management of patients with adult spinal deformity (ASD) has a high complication rate and it remains unknown whether baseline patient characteristics and surgical variables can predict early complications (intraoperative and perioperative [within 6 weeks]). The development of an accurate preoperative predictive model can aid in patient counseling, shared decision making, and improved surgical planning. The purpose of this study was to develop a model based on baseline demographic, radiographic, and surgical factors that can predict if patients will sustain an intraoperative or perioperative major complication. METHODS This study was a retrospective analysis of a prospective, multicenter ASD database. The inclusion criteria were age ≥ 18 years and the presence of ASD. In total, 45 variables were used in the initial training of the model including demographic data, comorbidities, modifiable surgical variables, baseline health-related quality of life, and coronal and sagittal radiographic parameters. Patients were grouped as either having at least 1 major intraoperative or perioperative complication (COMP group) or not (NOCOMP group). An ensemble of decision trees was constructed utilizing the C5.0 algorithm with 5 different bootstrapped models. Internal validation was accomplished via a 70/30 data split for training and testing each model, respectively. Overall accuracy, the area under the receiver operating characteristic (AUROC) curve, and predictor importance were calculated. RESULTS Five hundred fifty-seven patients were included: 409 (73.4%) in the NOCOMP group, and 148 (26.6%) in the COMP group. The overall model accuracy was 87.6% correct with an AUROC curve of 0.89 indicating a very good model fit. Twenty variables were determined to be the top predictors (importance ≥ 0.90 as determined by the model) and included (in decreasing importance): age, leg pain, Oswestry Disability Index, number of decompression levels, number of interbody fusion levels, Physical Component Summary of the SF-36, Scoliosis Research Society (SRS)-Schwab coronal curve type, Charlson Comorbidity Index, SRS activity, T-1 pelvic angle, American Society of Anesthesiologists grade, presence of osteoporosis, pelvic tilt, sagittal vertical axis, primary versus revision surgery, SRS pain, SRS total, use of bone morphogenetic protein, use of iliac crest graft, and pelvic incidence-lumbar lordosis mismatch. CONCLUSIONS A successful model (87% accuracy, 0.89 AUROC curve) was built predicting major intraoperative or perioperative complications following ASD surgery. This model can provide the foundation toward improved education and point-of-care decision making for patients undergoing ASD surgery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.