-
Environmental research · Nov 2017
Review Meta AnalysisThe impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review.
- Zhang Hehua, Chang Qing, Gao Shanyan, Wu Qijun, and Zhao Yuhong.
- Shengjing Hospital of China Medical University, Huaxiang Road No. 39, Tiexi District, China.
- Environ. Res. 2017 Nov 1; 159: 519-530.
Background And ObjectivesThere has been no clear consensus about whether prenatal exposure to air pollution contributes to the development of wheezing and asthma in children. We conducted a systematic review to analyze the association between exposure to different pollutants during pregnancy and the development of childhood wheezing and asthma.MethodsWe systematically reviewed epidemiological studies published through June 6, 2017 available in the MEDLINE and Web of Science databases. We included studies that examined the association between prenatal exposure to any air pollutants except tobacco smoke and the incidence or prevalence of "wheezing" or "asthma" from birth to 14 years of age. We extracted key characteristics of each included study using a template of predefined data items. We used the Critical Appraisal Skills Programme checklists to assess the validity of each included study. We conducted overall and subgroup meta-analyses for each summary exposure-outcome association. Pooled odds ratios (OR) with 95% confidence intervals (CI) were estimated by using a random effects model.ResultsEighteen studies met our eligibility criteria. There was notable variability in exposure assessment methods. The overall random effects risk estimates (95% CI) of different pollutants were 1.04 (0.94-1.15) aromatic hydrocarbons (PAH), 1.04 (1.01-1.07) NO2, 1.4 (0.97-2.03) PM2.5 for childhood wheeze and 1.07 (1.01-1.14) NO2, 1 (0.97-1.03) PM2.5, 1.02 (0.98-1.07) SO2, 1.08 (1.05-1.12) PM10 for childhood asthma. Minimal heterogeneity was seen for PAH and SO2, while some heterogeneity was observed for PM10, PM2.5 and NO2.ConclusionsThe overall and subgroup risk estimates from the meta-analyses showed statistically significant associations between prenatal exposures to NO2, SO2, and PM10 and the risk of wheezing and asthma development in childhood. There is insufficient evidence to show an effect of prenatal exposure to BC, CO, and O3 on childhood wheezing and asthma. Further studies are needed to examine the individual compounds' effects.Copyright © 2017 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.