• Toxicol In Vitro · Aug 2017

    Assessment of acute and chronic toxicity of doxorubicin in human induced pluripotent stem cell-derived cardiomyocytes.

    • Jochem Louisse, Rob C I Wüst, Francesca Pistollato, Taina Palosaari, Manuela Barilari, Peter Macko, Susanne Bremer, and Pilar Prieto.
    • Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands. Electronic address: jochem.louisse@wur.nl.
    • Toxicol In Vitro. 2017 Aug 1; 42: 182-190.

    AbstractThe present study assesses acute and chronic toxicity of doxorubicin in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), with the aim to obtain in vitro biomarkers that can be used as readouts to predict in vivo cardiotoxicity. Possible acute toxicity was investigated by assessing effects on the beating rate and the field potential duration (FPD) of doxorubicin-exposed cardiomyocytes by measuring electrical activity using multi-electrode array (MEA) analyses. No effects on the beating rate and FPD were found at concentrations up to 6μM, whereas at 12μM no electrical activity was recorded, indicating that the cardiomyocytes stopped beating. Acute and chronic effects of doxorubicin on mitochondria, which have been reported to be affected in doxorubicin-induced cardiotoxicity, were assessed using high content imaging techniques. To this end hiPSC-CMs were exposed to 150 or 300nM doxorubicin using both single dosing (3h and 2days) and repetitive dosing (3 times, of 2days each), including washout studies to assess delayed effects (assessment at day 14) and effects on cell number, mitochondrial density, mitochondrial membrane potential, mitochondrial superoxide levels and mitochondrial calcium levels were assessed. No effects of doxorubicin were found on mitochondrial density and mitochondrial superoxide levels, whereas doxorubicin reduced cell survival and slightly altered mitochondrial membrane potential and mitochondrial calcium levels, which was most profound in the washout studies. Altogether, the results of the present study show that concentrations of doxorubicin in the micromolar range were required to affect electrical activity of hiPSC-CMs, whereas nanomolar concentrations already affected cell viability and caused mitochondrial disturbances. Integration of these data with other in vitro data may enable the selection of a series of in vitro biomarkers that can be used as readouts to screen chemicals for possible cardiotoxicity.Copyright © 2017 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.