• J. Orthop. Res. · Jun 2007

    Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep.

    • Véronique Viateau, Geneviève Guillemin, Valérie Bousson, Karim Oudina, Didier Hannouche, Laurent Sedel, Delphine Logeart-Avramoglou, and Hervé Petite.
    • Ecole Nationale Vétérinaire d'Alfort, 7 avenue de Gaulle, 94700 Maisons Alfort, France.
    • J. Orthop. Res. 2007 Jun 1; 25 (6): 741-9.

    AbstractStandardized particulate bone constructs, obtained by expanding autologous mesenchymal stem cells (MSCs) onto coral granules in vitro, were transplanted into long-bone, critical-size defects in sheep. Control experiments were also performed in which autologous bone grafts were implanted. Defect cavities were lined with a preformed vascularized membrane (induced by temporarily inserting a cement spacer for 6 weeks prior to bone construct implantation), which served as a mold keeping the engineered bone granules in place. Radiographic, histological, and computed tomographic tests performed 6 months later showed that the osteogenic abilities of the engineered construct and autograft were significantly greater than those of coral scaffold alone. No significant differences were found between the amount of newly formed bone in defects filled with coral/MSCs and those filled with autograft, yet radiological scores differed significantly between the two groups (21% and 100% healed cortices, respectively). The present study on a clinically relevant animal model provides the first evidence that standardized particulate bone constructs can be used to repair large bone defects and that their osteogenic ability approaches that of bone autograft, the bone repair benchmark. By proving feasibility, the present study makes possible the treatment of segmental bone losses with bone constructs engineered from granules, a process which is much simpler than preparing customized massive constructs using computer-assisted techniques. Important parameters, such as the rate of scaffold resorption and the number of MSCs to be seeded on the scaffolds, need to be optimized before reaching pertinent definitive conclusions.(c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…