• Thrombosis research · Jan 2016

    Comparative Study

    Procoagulant snake venoms have differential effects in animal plasmas: Implications for antivenom testing in animal models.

    • Kalana P Maduwage, Fiona E Scorgie, Lisa F Lincz, Margaret A O'Leary, and Geoffrey K Isbister.
    • Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia; South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka. Electronic address: kalanapm@gmail.com.
    • Thromb. Res. 2016 Jan 1; 137: 174-7.

    BackgroundAnimal models are used to test toxic effects of snake venoms/toxins and the antivenom required to neutralise them. However, venoms that cause clinically relevant coagulopathy in humans may have differential effects in animals. We aimed to investigate the effect of different procoagulant snake venoms on various animal plasmas.MethodsProthrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen and D-dimer levels were measured in seven animal plasmas (human, rabbit, cat, guinea pig, pig, cow and rat). In vitro clotting times were then used to calculate the effective concentration (EC50) in each plasma for four snake venoms with different procoagulant toxins: Pseudonaja textilis, Daboia russelli, Echis carinatus and Calloselasma rhodostoma.ResultsCompared to human, PT and aPTT were similar for rat, rabbit and pig, but double for cat and cow, while guinea pig had similar aPTT but double PT. Fibrinogen and D-dimer levels were similar for all species. Human and rabbit plasmas had the lowest EC50 for P. textilis (0.1 and 0.4 μg/ml), D. russelli (0.4 and 0.1 μg/ml), E. carinatus (0.6 and 0.1 μg/ml) venoms respectively, while cat plasma had the lowest EC50 for C. rhodostoma (11 μg/ml) venom. Cow, rat, pig and guinea pig plasmas were highly resistant to all four venoms with EC50 10-fold that of human.ConclusionsDifferent animal plasmas have varying susceptibility to procoagulant venoms, and excepting rabbits, animal models are not appropriate to test procoagulant activity. In vitro assays on human plasma should instead be adopted for this purpose.Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.