-
- Wei Yong Gu, Marc-Antoine Justiz, and Hai Yao.
- Tissue Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, Florida 33124-0621, USA. wgu@miami.edu
- Spine. 2002 Nov 1; 27 (21): 2390-5.
Study DesignExperimental investigation of the electrical conductivity of normal and trypsin-treated lumbar anulus fibrosis specimens.ObjectivesTo measure the electrical conductivity of intervertebral disc tissues and to study the effects of tissue porosity (volume fraction of water) and fixed charge density on the electrical conductivity of anulus fibrosis in physiologic saline.Summary Of Background DataSpecific electrical conductivity is one of the material properties of intervertebral discs. Their value depends on ion concentrations and ion diffusivities within the tissue, which in turn are functions of tissue composition and structure. To our knowledge, the electrical conductivity of intervertebral discs has not been studied. Investigation of the electrical conductivity of intervertebral discs and understanding of their relationship to tissue porosity and fixed charge density will provide insights into electromechanical phenomena (e.g., streaming potential) and ion transport in intervertebral discs.MethodsA total of 35 porcine lumbar anulus fibrosis specimens were divided into two groups: one control group (n = 10) and one trypsin-treated group (n = 25). The specimens in the control group were subjected to one-dimensional free swelling in phosphate-buffered saline (pH 7.4), and electrical conductivity and porosity (water content) were measured over a period of about 45 minutes. The specimens in the treated group were immersed in a trypsin solution (372 U/mL phosphate-buffered saline) for 45 minutes at room temperature, and the electrical conductivity and porosity were measured after treatment. The electrical conductivity was correlated to tissue porosity for the control and treated specimens. The influences of porosity and fixed charge density were studied.ResultsThe average value for control specimens was 5.60 +/- 0.89 mS/cm (mean +/- SD; n = 10) before swelling and 9.11 +/- 0.90 mS/cm (mean +/- SD; n = 10) after swelling. Tissue porosity increased from 0.74 +/- 0.03 (mean +/- SD; n = 10) before swelling to 0.83 +/- 0.02 (mean +/- SD; n = 10) after swelling. The trypsin treatment reduced anulus fibrosis porosity by 3.6% (P < 0.05) and conductivity by 13% (P < 0.05) compared to those for control specimens after swelling. No significant changes werefound in wet and dry tissue densities between control and treated groups. There was a significant, linear correlation between conductivity and porosity for control anulus fibrosis specimens (R2 = 0.87; 86 measurements).ConclusionsMeasured electrical conductivity was sensitive to tissue porosity, but not to fixed charged density for anulus fibrosis specimens in phosphate-buffered saline.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.