• Pediatr Crit Care Me · Oct 2018

    Observational Study

    Applying Artificial Intelligence to Identify Physiomarkers Predicting Severe Sepsis in the PICU.

    • Rishikesan Kamaleswaran, Oguz Akbilgic, Madhura A Hallman, Alina N West, Robert L Davis, and Samir H Shah.
    • Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN.
    • Pediatr Crit Care Me. 2018 Oct 1; 19 (10): e495-e503.

    ObjectivesWe used artificial intelligence to develop a novel algorithm using physiomarkers to predict the onset of severe sepsis in critically ill children.DesignObservational cohort study.SettingPICU.PatientsChildren age between 6 and 18 years old.InterventionsNone.Measurements And Main ResultsContinuous minute-by-minute physiologic data were available for a total of 493 critically ill children admitted to a tertiary care PICU over an 8-month period, 20 of whom developed severe sepsis. Using an alert time stamp generated by an electronic screening algorithm as a reference point, we studied up to 24 prior hours of continuous physiologic data. We identified physiomarkers, including SD of heart rate, systolic and diastolic blood pressure, and symbolic transitions probabilities of those variables that discriminated severe sepsis patients from controls (all other patients admitted to the PICU who did not meet severe sepsis criteria). We used logistic regression, random forests, and deep Convolutional Neural Network methods to derive our models. Analysis was performed using data generated in two windows prior to the firing of the electronic screening algorithm, namely, 2-8 and 8-24 hours. When analyzing the physiomarkers present in the 2-8 hours analysis window, logistic regression performed with specificity of 87.4% and sensitivity of 55.0%, random forest performed with 79.6% specificity and 80.0% sensitivity, and the Convolutional Neural Network performed with 83.0% specificity and 75.0% sensitivity. When analyzing physiomarkers from the 8-24 hours window, logistic regression resulted in 77.1% specificity and 39.3% sensitivity, random forest performed with 82.3% specificity and 61.1% sensitivity, whereas the Convolutional Neural Network method achieved 81% specificity and 76% sensitivity.ConclusionsArtificial intelligence can be used to predict the onset of severe sepsis using physiomarkers in critically ill children. Further, it may detect severe sepsis as early as 8 hours prior to a real-time electronic severe sepsis screening algorithm.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…