• Chest · Jun 2018

    Multicenter Study

    Cough Frequency During Treatment Associated With Baseline Cavitary Volume and Proximity to the Airway in Pulmonary TB.

    • Alvaro Proaño, David P Bui, José W López, Nancy M Vu, Marjory A Bravard, Gwenyth O Lee, Brian H Tracey, Ziyue Xu, Germán Comina, Eduardo Ticona, Daniel J Mollura, Jon S Friedland, MooreDavid A JDAJLaboratorio de Investigación en Enfermedades Infecciosas, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru; Asociación Benéfica PRISMA, Lima, Peru; TB Centre, Lo, Carlton A Evans, Philip Caligiuri, Robert H Gilman, and Tuberculosis Working Group in Peru*.
    • Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru. Electronic address: alvaroproan@gmail.com.
    • Chest. 2018 Jun 1; 153 (6): 135813671358-1367.

    BackgroundCough frequency, and its duration, is a biomarker that can be used in low-resource settings without the need of laboratory culture and has been associated with transmission and treatment response. Radiologic characteristics associated with increased cough frequency may be important in understanding transmission. The relationship between cough frequency and cavitary lung disease has not been studied.MethodsWe analyzed data in 41 adults who were HIV negative and had culture-confirmed, drug-susceptible pulmonary TB throughout treatment. Cough recordings were based on the Cayetano Cough Monitor, and sputum samples were evaluated using microscopic observation drug susceptibility broth culture; among culture-positive samples, bacillary burden was assessed by means of time to positivity. CT scans were analyzed by a US-board-certified radiologist and a computer-automated algorithm. The algorithm evaluated cavity volume and cavitary proximity to the airway. CT scans were obtained within 1 month of treatment initiation. We compared small cavities (≤ 7 mL) and large cavities (> 7 mL) and cavities located closer to (≤ 10 mm) and farther from (> 10 mm) the airway to cough frequency and cough cessation until treatment day 60.ResultsCough frequency during treatment was twofold higher in participants with large cavity volumes (rate ratio [RR], 1.98; P = .01) and cavities located closer to the airway (RR, 2.44; P = .001). Comparably, cough ceased three times faster in participants with smaller cavities (adjusted hazard ratio [HR], 2.89; P = .06) and those farther from the airway (adjusted HR, 3.61;, P = .02). Similar results were found for bacillary burden and culture conversion during treatment.ConclusionsCough frequency during treatment is greater and lasts longer in patients with larger cavities, especially those closer to the airway.Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…