• Anesthesiology · Oct 2018

    Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality.

    • Christine K Lee, Ira Hofer, Eilon Gabel, Pierre Baldi, and Maxime Cannesson.
    • From the Department of Anesthesiology and Perioperative Care (C.K.L., M.C.) Department of Computer Sciences (C.K.L., P.B.) Department of Bioengineering (M.C.), University of California Irvine, Irvine, California Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, California (I.H., E.G., M.C.).
    • Anesthesiology. 2018 Oct 1; 129 (4): 649-662.

    What We Already Know About This TopicWHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: The authors tested the hypothesis that deep neural networks trained on intraoperative features can predict postoperative in-hospital mortality.MethodsThe data used to train and validate the algorithm consists of 59,985 patients with 87 features extracted at the end of surgery. Feed-forward networks with a logistic output were trained using stochastic gradient descent with momentum. The deep neural networks were trained on 80% of the data, with 20% reserved for testing. The authors assessed improvement of the deep neural network by adding American Society of Anesthesiologists (ASA) Physical Status Classification and robustness of the deep neural network to a reduced feature set. The networks were then compared to ASA Physical Status, logistic regression, and other published clinical scores including the Surgical Apgar, Preoperative Score to Predict Postoperative Mortality, Risk Quantification Index, and the Risk Stratification Index.ResultsIn-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep neural network with a reduced feature set and ASA Physical Status classification had the highest area under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 to 0.93). The highest logistic regression area under the curve was found with a reduced feature set and ASA Physical Status (0.90, 95% CI, 0.87 to 0.93). The Risk Stratification Index had the highest area under the receiver operating characteristics curve, at 0.97 (95% CI, 0.94 to 0.99).ConclusionsDeep neural networks can predict in-hospital mortality based on automatically extractable intraoperative data, but are not (yet) superior to existing methods.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…