• Eur Spine J · Oct 2018

    Disc cell therapy with bone-marrow-derived autologous mesenchymal stromal cells in a large porcine disc degeneration model.

    • G W Omlor, S Lorenz, A G Nerlich, T Guehring, and W Richter.
    • Center of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany. Georg.Omlor@med.uni-heidelberg.de.
    • Eur Spine J. 2018 Oct 1; 27 (10): 2639-2649.

    PurposeDisc regeneration through matrix-assisted autologous mesenchymal stromal cell therapy seems promising against disc degeneration with convincing results in small animal models. Whether these positive results can be transferred to larger animal models or humans is unclear.MethodsFibrin matrix-assisted autologous bone-marrow-derived mesenchymal stromal cell therapy was compared to acellular fibrin matrix therapy in a porcine in vivo model. First, disc degeneration was induced by annular puncture and partial nucleotomy with a large 16G-needle, and 12 weeks later, disc therapy was performed in a second surgery with a thinner 26G needle. Seventy-two lumbar discs from 12 aged adult pigs were evaluated by histology, micro-CT, and gene expression analysis 13 and 24 weeks after nucleotomy and 1 and 12 weeks after treatment, respectively.ResultsRadiologic disc height was not significantly different in both treatment groups. In the semi-quantitative histologic degeneration score, significant disc degeneration was still evident 1 week after treatment both in the mesenchymal stromal cell group and in the acellular fibrin matrix group. 12 weeks after treatment, degeneration was, however, not further increased and mesenchymal-stromal-cell-treated discs showed significantly less disc degeneration in the annulus fibrosus (p = 0.02), whereas reduction in the nucleus pulposus did not reach statistical significance. Cell treatment compared to matrix alone found less Col1 gene expression as a marker for fibrosis and more expression of the trophic factor BMP2 in the nucleus pulposus, whereas the inflammation marker IL1ß was reduced in the annulus fibrosus.ConclusionsDisc treatment with fibrin matrix-assisted autologous mesenchymal stromal cells reduced degenerative findings compared to acellular fibrin matrix alone. Regenerative changes, however, were not significant for all parameters showing limitations in a large biomechanically demanding model with aged discs. These slides can be retrieved under Electronic Supplementary Material.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…