• Respiratory care · Feb 2019

    Humidification Performance of Passive and Active Humidification Devices Within a Spontaneously Breathing Tracheostomized Cohort.

    • Nobuto Nakanishi, Jun Oto, Taiga Itagaki, Emiko Nakataki, Mutsuo Onodera, and Masaji Nishimura.
    • Emergency and Critical Care Medicine, Tokushima University Hospital, Tokushima, Japan.
    • Respir Care. 2019 Feb 1; 64 (2): 130-135.

    BackgroundMost heat-and-moisture exchangers (HMEs) for patients with tracheostomy and spontaneously breathing are small and have suction ports that allow some expiratory gas to escape, which loses water vapor held in the expired gas. Recently, a heated-and-humidified high-flow system for spontaneously breathing patients with tracheostomy was developed. Little is known, however, about the humidifying performance of HMEs or heated-and-humidified high-flow systems for spontaneous breathing patients with a tracheostomy.ObjectiveTo investigate the humidifying performance of the HMEs and heated-and-humidified high-flow systems for spontaneously breathing patients with tracheostomy.MethodsAdult spontaneously breathing subjects with tracheostomy and were enrolled when their respiratory parameters and SpO2 were stable. We measured absolute humidity, relative humidity, and temperature by using a capacitance-type moisture sensor at the outlet of the tracheostomy tube. Heated-and-humidified high flow was delivered via the a humidifier and tracheostomy interface, and a selected HME. The subjects received heated-and-humidified high flow, after which an HME was used for humidification before switching back to a heated-and-humidified high-flow system.ResultsTen subjects (5 men, 5 women; mean ± SD age, 72 ± 12 y) were enrolled. The admission diagnoses were neurologic (5 subjects), respiratory failure (3), and cardiac arrest (2). The APACHE (Acute Physiology and Chronic Health Evaluation) II score was 24 (interquartile range, 20-27). Tracheostomy was performed on day 7 (interquartile range, 5-11 d) after endotracheal intubation, and the duration of mechanical ventilation was 10 d (interquartile range, 6-11 d). The temperature with the HME was 29.9 ± 1.0°C and, during heated-and-humidified high-flow use was 35.3 ± 0.8°C (P < .001). With both the HME and the heated-and-humidified high-flow system, the relative humidity reached 100%; the absolute humidity with HME was 30.2 ± 1.8 mg/L, and, with the heated-and-humidified high-flow system, was 40.3 ± 1.8 mg/L (P < .001).ConclusionsIn spontaneously breathing subjects with tracheostomy, an heated-and-humidified high-flow system achieved higher absolute humidity than did an HME.Copyright © 2019 by Daedalus Enterprises.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.