• Pain · Dec 2018

    Tetrodotoxin-sensitive voltage-gated sodium channels regulate bladder afferent responses to distension.

    • Luke Grundy, Andelain Erickson, Ashlee Caldwell, Sonia Garcia-Caraballo, Grigori Rychkov, Andrea Harrington, and Stuart M Brierley.
    • Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.
    • Pain. 2018 Dec 1; 159 (12): 2573-2584.

    AbstractInterstitial cystitis/bladder pain syndrome (IC/BPS) is a prevalent, chronic bladder disorder that negatively impacts the quality of life for ∼5% of the western population. Hypersensitivity of mechanosensory afferents embedded within the bladder wall is considered a key component in mediating IC/BPS symptoms. Bladder infusion of voltage-gated sodium (Nav) channel blockers show clinical efficacy in treating IC/BPS symptoms; however, the current repertoire of Nav channels expressed by and contributing to bladder afferent function is unknown. We used single-cell reverse-transcription polymerase chain reaction of retrogradely traced bladder-innervating dorsal root ganglia (DRG) neurons to determine the expression profile of Nav channels, and patch-clamp recordings to characterise the contribution of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Nav channels to total sodium current and neuronal excitability. We determined the TTX-S and TTX-R contribution to mechanosensitive bladder afferent responses ex vivo and spinal dorsal horn activation in vivo. Single-cell reverse-transcription polymerase chain reaction of bladder-innervating DRG neurons revealed significant heterogeneity in Nav channel coexpression patterns. However, TTX-S Nav channels contribute the vast majority of the total sodium current density and regulate the neuronal excitability of bladder DRG neurons. Furthermore, TTX-S Nav channels mediate almost all bladder afferent responses to distension. In vivo intrabladder infusion of TTX significantly reduces activation of dorsal horn neurons within the spinal cord to bladder distension. These data provide the first comprehensive analysis of Nav channel expression within sensory afferents innervating the bladder. They also demonstrate an essential role for TTX-S Nav channel regulation of bladder-innervating DRG neuroexcitability, bladder afferent responses to distension, and nociceptive signalling to the spinal cord.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.