-
Rev Chir Orthop Reparatrice Appar Mot · Dec 2002
[Influence of the height of the joint space on the three-dimensional kinetics of total knee prostheses and behavior of the lateral ligaments: an in vitro study].
- F Châtain, F Marin, F Lavaste, W Skalli, and P Neyret.
- Service de Chirurgie Orthopédique et Traumatologie, Hôpital de la Croix-Rousse, Centre Livet, Lyon.
- Rev Chir Orthop Reparatrice Appar Mot. 2002 Dec 1; 88 (8): 803-11.
Purpose Of The StudyThe level of the joint space can be modified after implantation of a total knee prosthesis. Likewise, ligament balance is a cardinal point of the surgical technique. The purpose of this in vitro work was to study the influence of the position of the distal tibiofemoral joint space after implantation of a total knee prosthesis on the three-dimensional kinetics of the knee joint and on the behavior of the lateral ligaments.Material And MethodTotal knee arthroplasty (TKA) with a posterior stabilized prosthesis was performed on seven fresh-frozen cadaver specimens. A specially-designed experimental device was used to achieve continuous knee motion simulating hip flexion from a vertical position. The Vicon optoelectronic system was used to record the femorotibial and femoropatellar kinematics in three dimensions. Two electronic goniometers were positioned on the insertions of the lateral ligaments to measure ligament displacements during knee movements. Five configurations were recorded on each knee: healthy knee, same knee after TKA, and 2-mm and 4-mm upward displacement of the prosthetic distal tibiofemoral joint space. Ligament balance at extension was preserved in all configurations. The kinematic curves obtained were compared with the coefficient of multiple correlation.ResultsChanging the position of the joint space had a significant effect on the kinematics of the patella (rotation and abduction-rotation) but did not have a significant effect on the femorotibial kinematics. Variations in the length of the lateral ligaments were of small amplitude. Lowering the joint space led to laxity at flexion. Raising the joint space tightened the ligaments at flexion.DiscussionThese results confirm our clinical impression when the level of the distal femur cut is set to achieve tension on the ligaments at knee extension. If the joint space is lowered, i.e. with a more sparing distal femur cut, the prosthesis takes up less space during flexion, leading to laxity at flexion. If the joint space is raised, i.e. with an excessive distal femur cut, the prosthesis takes up more space during flexion, tightening the lateral ligaments.ConclusionThe position of the joint space must be rigorously reproduced during TKA not only to maintain correct femorotibial kinematics, but most importantly to preserve patellar kinematics and proper behavior of the lateral ligaments. Ideally, the height of the joint space should be restored first, followed by control of the ligament balance. An over- or undercut of the femur can lead to defective femoropatellar kinematics and ligament tension at flexion despite good ligament balance at extension. In addition, ligament balance should not be achieved by displacing the tibial cut or by modifying the thickness of the tibial component, which would have an effect not only at extension but also at flexion.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.