-
Bmc Med Inform Decis · May 2012
Computational challenges and human factors influencing the design and use of clinical research participant eligibility pre-screening tools.
- Taylor R Pressler, Po-Yin Yen, Jing Ding, Jianhua Liu, Peter J Embi, and Philip R O Payne.
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
- Bmc Med Inform Decis. 2012 May 30; 12: 47.
BackgroundClinical trials are the primary mechanism for advancing clinical care and evidenced-based practice, yet challenges with the recruitment of participants for such trials are widely recognized as a major barrier to these types of studies. Data warehouses (DW) store large amounts of heterogenous clinical data that can be used to enhance recruitment practices, but multiple challenges exist when using a data warehouse for such activities, due to the manner of collection, management, integration, analysis, and dissemination of the data. A critical step in leveraging the DW for recruitment purposes is being able to match trial eligibility criteria to discrete and semi-structured data types in the data warehouse, though trial eligibility criteria tend to be written without concern for their computability. We present the multi-modal evaluation of a web-based tool that can be used for pre-screening patients for clinical trial eligibility and assess the ability of this tool to be practically used for clinical research pre-screening and recruitment.MethodsThe study used a validation study, usability testing, and a heuristic evaluation to evaluate and characterize the operational characteristics of the software as well as human factors affecting its use.ResultsClinical trials from the Division of Cardiology and the Department of Family Medicine were used for this multi-modal evaluation, which included a validation study, usability study, and a heuristic evaluation. From the results of the validation study, the software demonstrated a positive predictive value (PPV) of 54.12% and 0.7%, respectively, and a negative predictive value (NPV) of 73.3% and 87.5%, respectively, for two types of clinical trials. Heuristic principles concerning error prevention and documentation were characterized as the major usability issues during the heuristic evaluation.ConclusionsThis software is intended to provide an initial list of eligible patients to a clinical study coordinators, which provides a starting point for further eligibility screening by the coordinator. Because this software has a high "rule in" ability, meaning that it is able to remove patients who are not eligible for the study, the use of an automated tool built to leverage an existing enterprise DW can be beneficial to determining eligibility and facilitating clinical trial recruitment through pre-screening. While the results of this study are promising, further refinement and study of this and related approaches to automated eligibility screening, including comparison to other approaches and stakeholder perceptions, are needed and future studies are planned to address these needs.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.