• Pain · Jan 2019

    Prospective administration of anti-nerve growth factor treatment effectively suppresses functional connectivity alterations after cancer-induced bone pain in mice.

    • David Buehlmann, Giovanna Diletta Ielacqua, Jael Xandry, and Markus Rudin.
    • Institute for Biomedical Engineering, ETH, University of Zurich, Zurich, Switzerland.
    • Pain. 2019 Jan 1; 160 (1): 151-159.

    AbstractCancer-induced bone pain is abundant among advanced-stage cancer patients and arises from a primary tumor in the bone or skeletal metastasis of common cancer types such as breast, lung, or prostate cancer. Recently, antibodies targeting nerve growth factor (NGF) have been shown to effectively relieve neuropathic and inflammatory pain states in mice and in humans. Although efficacy has been shown in mice on a behavioral level, effectiveness in preventing pain-induced functional rearrangements in the central nervous system has not been shown. Therefore, we assessed longitudinal whole-brain functional connectivity using resting-state functional magnetic resonance imaging in a mouse model of cancer-induced bone pain. We found functional connectivity between major hubs of ascending and descending pain pathways such as the periaqueductal gray, amygdala, thalamus, and cortical somatosensory regions to be affected by a developing cancer pain state. These changes could be successfully prevented through prospective administration of a monoclonal anti-NGF antibody (mAb911). This indicates efficacy of anti-NGF treatment to prevent pain-induced adaptations in brain functional networks after persistent nociceptive input from cancer-induced bone pain. In addition, it highlights the suitability of resting-state functional magnetic resonance imaging readouts as an indicator of treatment response on the basis of longitudinal functional network changes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…