• Journal of neurotrauma · Nov 2018

    High-Speed Fluoroscopy to Measure Dynamic Spinal Cord Deformation in an In Vivo Rat Model.

    • Erin Lucas, Thomas Whyte, Jie Liu, Colin Russell, Wolfram Tetzlaff, and Peter Alec Cripton.
    • 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .
    • J. Neurotrauma. 2018 Nov 1; 35 (21): 2572-2580.

    AbstractAlthough spinal cord deformation is thought to be a predictor of injury severity, few researchers have investigated dynamic cord deformation, in vivo, during impact. This is needed to establish correlations among impact parameters, internal cord deformation, and histological and functional outcomes. Relying on surface deformations alone may not sufficiently represent spinal cord deformation. The objective of this study was to develop a high-speed fluoroscopic method of tracking the surface and internal cord deformations of rat spinal cord during experimental cord injury. Two radio-opaque beads were injected into the cord at C5/6 in the dorsal and ventral white matter. Four additional beads were glued to the surface of the cord. Dynamic bead displacement was tracked during a dorsal impact (130 mm/sec, 1 mm depth) by high-speed radiographic imaging at 3000 FPS, laterally. The internal spinal cord beads displaced significantly more than the surface beads in the ventral direction (1.1-1.9 times) and more than most surface beads in the cranial direction (1.2-1.5 times). The dorsal beads (internal and surface) displaced more than the ventral beads during all impacts. The bead displacement pattern implies that the spinal cord undergoes complex internal and surface deformations during impact. Residual displacement of the internal beads was significantly greater than that of the surface beads in the cranial-caudal direction but not the dorsoventral direction. Finite element simulation confirmed that the additional bead mass likely had little effect on the internal cord deformations. These results support the merit of this technique for measuring in vivo spinal cord deformation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…