• World Neurosurg · Nov 2018

    Computer-Assisted Three-Dimensional Morphology Evaluation of Intracranial Aneurysms.

    • Hamidreza Rajabzadeh-Oghaz, Nicole Varble, Hussain Shallwani, Vincent M Tutino, Ashkan Mowla, Hakeem J Shakir, Kunal Vakharia, Gursant S Atwal, Adnan H Siddiqui, Jason M Davies, and Hui Meng.
    • Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA; Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York, USA.
    • World Neurosurg. 2018 Nov 1; 119: e541-e550.

    ObjectivePrecise morphologic evaluation is important for intracranial aneurysm (IA) management. At present, clinicians manually measure the IA size and neck diameter on 2-dimensional (2D) digital subtraction angiographic (DSA) images and categorize the IA shape as regular or irregular on 3-dimensional (3D)-DSA images, which could result in inconsistency and bias. We investigated whether a computer-assisted 3D analytical approach could improve IA morphology assessment.MethodsFive neurointerventionists evaluated the size, neck diameter, and shape of 39 IAs using current and computer-assisted 3D approaches. In the computer-assisted 3D approach, the size, neck diameter, and undulation index (UI, a shape irregularity metric) were extracted using semiautomated reconstruction of aneurysm geometry using 3D-DSA, followed by IA neck identification and computerized geometry assessment.ResultsThe size and neck diameter measured using the manual 2D approach were smaller than computer-assisted 3D measurements by 2.01 mm (P < 0.001) and 1.85 mm (P < 0.001), respectively. Applying the definitions of small IAs (<7 mm) and narrow-necked IAs (<4 mm) from the reported data, interrater variation in manual 2D measurements resulted in inconsistent classification of the size of 14 IAs and the necks of 19 IAs. Visual inspection resulted in an inconsistent shape classification for 23 IAs among the raters. Greater consistency was achieved using the computer-assisted 3D approach for size (intraclass correlation coefficient [ICC], 1.00), neck measurements (ICC, 0.96), and shape quantification (UI; ICC, 0.94).ConclusionsComputer-assisted 3D morphology analysis can improve accuracy and consistency in measurements compared with manual 2D measurements. It can also more reliably quantify shape irregularity using the UI. Future application of computer-assisted analysis tools could help clinicians standardize morphology evaluations, leading to more consistent IA evaluations.Copyright © 2018 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.