• World Neurosurg · Oct 2018

    Initial Experiences with Artificial Neural Networks in Detection of CT Perfusion Deficits.

    • Jan Vargas, Alejandro Spiotta, and Arindram Rano Chatterjee.
    • Greenville Health System Division of Neuroendovascular Surgery, Greenville, South Carolina, USA. Electronic address: j.vargas.machaj@gmail.com.
    • World Neurosurg. 2018 Oct 24.

    BackgroundHead computed tomography (CT) with perfusion imaging has become crucial in the selection of patients for mechanical thrombectomy. In recent years, machine learning has rapidly evolved and found applications in a wide variety of health care tasks. We report our initial experiences with training a neural network to predict the presence and laterality of a perfusion deficit in patients with acute ischemic stroke.MethodsCT perfusion images of patients with suspicion for acute ischemic stroke were obtained. The data were split into training and validation sets. A long-term, recurrent convolutional network was constructed, which consisted of a convolutional neural network stacked on top of a long short-term memory layer.ResultsOf the 396 patients, 139 (35.1%) had a right-sided perfusion deficit, 199 (50.3%) had a left-sided deficit, and 58 (14.6%) had no evidence of a deficit. The best model was able to achieve an accuracy of 85.8% on validation data. Receiver operating characteristic curves were generated for each class, and an area under the curve (AUC) was calculated for each class. For right-sided deficits, the AUC was 0.90, for left-sided deficits, the AUC was 0.96, and for no deficit, the AUC was 0.93.ConclusionsThe field of machine learning, powered by convolutional neural networks for the task of image recognition and processing, has quickly developed in recent years. We constructed an artificial neural network that can identify and classify the presence and laterality of a perfusion deficit on CT perfusion imaging.Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…