• Br J Anaesth · May 2018

    Isoflurane disrupts excitatory neurotransmitter dynamics via inhibition of mitochondrial complex I.

    • P I Zimin, C B Woods, E B Kayser, J M Ramirez, P G Morgan, and M M Sedensky.
    • Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA. Electronic address: Pavel.Zimin@seattlechildrens.org.
    • Br J Anaesth. 2018 May 1; 120 (5): 1019-1032.

    BackgroundThe mechanisms of action of volatile anaesthetics are unclear. Volatile anaesthetics selectively inhibit complex I in the mitochondrial respiratory chain. Mice in which the mitochondrial complex I subunit NDUFS4 is knocked out [Ndufs4(KO)] either globally or in glutamatergic neurons are hypersensitive to volatile anaesthetics. The volatile anaesthetic isoflurane selectively decreases the frequency of spontaneous excitatory events in hippocampal slices from Ndufs4(KO) mice.MethodsComplex I inhibition by isoflurane was assessed with a Clark electrode. Synaptic function was measured by stimulating Schaffer collateral fibres and recording field potentials in the hippocampus CA1 region.ResultsIsoflurane specifically inhibits complex I dependent respiration at lower concentrations in mitochondria from Ndufs4(KO) than from wild-type mice. In hippocampal slices, after high frequency stimulation to increase energetic demand, short-term synaptic potentiation is less in KO compared with wild-type mice. After high frequency stimulation, both Ndufs4(KO) and wild-type hippocampal slices exhibit striking synaptic depression in isoflurane at twice the 50% effective concentrations (EC50). The pattern of synaptic depression by isoflurane indicates a failure in synaptic vesicle recycling. Application of a selective A1 adenosine receptor antagonist partially eliminates isoflurane-induced short-term depression in both wild-type and Ndufs4(KO) slices, implicating an additional mitochondria-dependent effect on exocytosis. When mitochondria are the sole energy source, isoflurane completely eliminates synaptic output in both mutant and wild-type mice at twice the (EC50) for anaesthesia.ConclusionsVolatile anaesthetics directly inhibit mitochondrial complex I as a primary target, limiting synaptic ATP production, and excitatory vesicle endocytosis and exocytosis.Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.