• Epilepsia · Apr 2018

    Automated trajectory planning for laser interstitial thermal therapy in mesial temporal lobe epilepsy.

    • Vejay N Vakharia, Rachel Sparks, Kuo Li, Aidan G O'Keeffe, Anna Miserocchi, Andrew W McEvoy, Michael R Sperling, Ashwini Sharan, Sebastien Ourselin, John S Duncan, and Chengyuan Wu.
    • Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
    • Epilepsia. 2018 Apr 1; 59 (4): 814-824.

    ObjectiveSurgical resection of the mesial temporal structures brings seizure remission in 65% of individuals with drug-resistant mesial temporal lobe epilepsy (MTLE). Laser interstitial thermal therapy (LiTT) is a novel therapy that may provide a minimally invasive means of ablating the mesial temporal structures with similar outcomes, while minimizing damage to the neocortex. Systematic trajectory planning helps ensure safety and optimal seizure freedom through adequate ablation of the amygdalohippocampal complex (AHC). Previous studies have highlighted the relationship between the residual unablated mesial hippocampal head and failure to achieve seizure freedom. We aim to implement computer-assisted planning (CAP) to improve the ablation volume and safety of LiTT trajectories.MethodsTwenty-five patients who had previously undergone LiTT for MTLE were studied retrospectively. The EpiNav platform was used to automatically generate an optimal ablation trajectory, which was compared with the previous manually planned and implemented trajectory. Expected ablation volumes and safety profiles of each trajectory were modeled. The implemented laser trajectory and achieved ablation of mesial temporal lobe structures were quantified and correlated with seizure outcome.ResultsCAP automatically generated feasible trajectories with reduced overall risk metrics (P < .001) and intracerebral length (P = .007). There was a significant correlation between the actual and retrospective CAP-anticipated ablation volumes, supporting a 15 mm diameter ablation zone model (P < .001). CAP trajectories would have provided significantly greater ablation of the amygdala (P = .0004) and AHC (P = .008), resulting in less residual unablated mesial hippocampal head (P = .001), and reduced ablation of the parahippocampal gyrus (P = .02).SignificanceCompared to manually planned trajectories CAP provides a better safety profile, with potentially improved seizure-free outcome and reduced neuropsychological deficits, following LiTT for MTLE.© 2018 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.