• Bmc Med Res Methodol · Nov 2016

    Observational Study

    Predictors of in-hospital mortality following major lower extremity amputations in type 2 diabetic patients using artificial neural networks.

    • Ana Lopez-de-Andres, Valentin Hernandez-Barrera, Roberto Lopez, Pablo Martin-Junco, Isabel Jimenez-Trujillo, Alejandro Alvaro-Meca, Miguel Angel Salinero-Fort, and Rodrigo Jimenez-Garcia.
    • Preventive Medicine and Public Health Teaching and Research Unit, Health Sciences Faculty, Rey Juan Carlos University, Avda. de Atenas s/n, 28922, Alcorcón, Comunidad de Madrid, Spain. ana.lopez@urjc.es.
    • Bmc Med Res Methodol. 2016 Nov 22; 16 (1): 160.

    BackgroundOutcome prediction is important in the clinical decision-making process. Artificial neural networks (ANN) have been used to predict the risk of post-operative events, including survival, and are increasingly being used in complex medical decision making. We aimed to use ANN analysis to estimate predictive factors of in-hospital mortality (IHM) in patients with type 2 diabetes (T2DM) after major lower extremity amputation (LEA) in Spain.MethodsWe design a retrospective, observational study using ANN models. We used the Spanish National Hospital Discharge Database to select all hospital admissions of major LEA procedure in T2DM patients.Main Outcome MeasuresPredictors of IHM using 4 ANN models: i) with all discharge diagnosis included in the database; ii) with all discharge diagnosis included in the database, excluding infectious diseases; iii) comorbidities included in the Charlson Comorbidities Index; iv) comorbidities included in the Elixhauser Comorbidity Index.ResultsFrom 2003 to 2013, 40,857 major LEAs in patients with T2DM were identified with a 10.0% IHM. We found that Elixhauser Comorbidity Index model performed better in terms of sensitivity, specificity and precision than Charlson Comorbidity Index model (0.7634 vs 0.7444; 0.9602 vs 0.9121; 0.9511 vs 0.888, respectively). The area under the ROC curve for Elixhauser comorbidity model was 91.7% (95% CI 90.3-93.0) and for Charlson comorbidity model was 88.9% (95% CI; 87.590.2) p = 0.043. Models including all discharge diagnosis with and without infectious diseases showed worse results. In the Elixhauser Comorbidity Index model the most sensitive parameter was age (variable sensitive ratio [VSR] 1.451) followed by female sex (VSR 1.433), congestive heart failure (VSR 1.341), renal failure (VSR 1.274) and chronic pulmonary disease (VSR 1.266).ConclusionsElixhauser Comorbidity Index is a superior comorbidity risk-adjustment model for major LEA survival prediction in patients with T2DM than Charlson Comorbidity Index model using ANN models. Female sex, congestive heart failure, and renal failure are strong predictors of mortality in these patients.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.