-
Critical care medicine · Sep 2018
Clinical Trial Observational StudyMolecular Regulation of Acute Tie2 Suppression in Sepsis.
- Kristina Thamm, Claudia Schrimpf, Jennifer Retzlaff, Temitayo O Idowu, Matijs van Meurs, Jan G Zijlstra, Chandra C Ghosh, Jana Zeitvogel, Thomas A Werfel, Hermann Haller, Samir M Parikh, and Sascha David.
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
- Crit. Care Med. 2018 Sep 1; 46 (9): e928-e936.
ObjectivesTie2 is a tyrosine kinase receptor expressed by endothelial cells that maintains vascular barrier function. We recently reported that diverse critical illnesses acutely decrease Tie2 expression and that experimental Tie2 reduction suffices to recapitulate cardinal features of the septic vasculature. Here we investigated molecular mechanisms driving Tie2 suppression in settings of critical illness.DesignLaboratory and animal research, postmortem kidney biopsies from acute kidney injury patients and serum from septic shock patients.SettingResearch laboratories and ICU of Hannover Medical School, Harvard Medical School, and University of Groningen.PatientsDeceased septic acute kidney injury patients (n = 16) and controls (n = 12) and septic shock patients (n = 57) and controls (n = 22).InterventionsMolecular biology assays (Western blot, quantitative polymerase chain reaction) + in vitro models of flow and transendothelial electrical resistance experiments in human umbilical vein endothelial cells; murine cecal ligation and puncture and lipopolysaccharide administration.Measurements And Main ResultsWe observed rapid reduction of both Tie2 messenger RNA and protein in mice following cecal ligation and puncture. In cultured endothelial cells exposed to tumor necrosis factor-α, suppression of Tie2 protein was more severe than Tie2 messenger RNA, suggesting distinct regulatory mechanisms. Evidence of protein-level regulation was found in tumor necrosis factor-α-treated endothelial cells, septic mice, and septic humans, all three of which displayed elevation of the soluble N-terminal fragment of Tie2. The matrix metalloprotease 14 was both necessary and sufficient for N-terminal Tie2 shedding. Since clinical settings of Tie2 suppression are often characterized by shock, we next investigated the effects of laminar flow on Tie2 expression. Compared with absence of flow, laminar flow induced both Tie2 messenger RNA and the expression of GATA binding protein 3. Conversely, septic lungs exhibited reduced GATA binding protein 3, and knockdown of GATA binding protein 3 in flow-exposed endothelial cells reduced Tie2 messenger RNA. Postmortem tissue from septic patients showed a trend toward reduced GATA binding protein 3 expression that was associated with Tie2 messenger RNA levels (p < 0.005).ConclusionsTie2 suppression is a pivotal event in sepsis that may be regulated both by matrix metalloprotease 14-driven Tie2 protein cleavage and GATA binding protein 3-driven flow regulation of Tie2 transcript.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.