-
- Chao-Shun Lin, Chuen-Chau Chang, Jainn-Shiun Chiu, Yuan-Wen Lee, Jui-An Lin, Martin S Mok, Hung-Wen Chiu, and Yu-Chuan Li.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City, Taiwan (CSL)
- Med Decis Making. 2011 Mar 1; 31 (2): 308-14.
BackgroundPerioperative hypotension is associated with adverse outcomes in patients undergoing surgery. A computer-based model that integrates related factors and predicts the risk of hypotension would be helpful in clinical anesthesia. The purpose of this study was to develop artificial neural network (ANN) models to identify patients at high risk for postinduction hypotension during general anesthesia.MethodsAnesthesia records for March through November 2007 were reviewed, and 1017 records were analyzed. Eleven patient-related, 2 surgical, and 5 anesthetic variables were used to develop the ANN and logistic regression (LR) models. The quality of the models was evaluated by an external validation data set. Three clinicians were asked to make predictions of the same validation data set on a case-by-case basis.ResultsThe ANN model had an accuracy of 82.3%, sensitivity of 76.4%, and specificity of 85.6%. The accuracy of the LR model was 76.5%, the sensitivity was 74.5%, and specificity was 77.7%. The area under the receiver operating characteristic curve for the ANN and LR models was 0.893 and 0.840. The clinicians had the lowest predictive accuracy and sensitivity compared with the ANN and LR models.ConclusionsThe ANN model developed in this study had good discrimination and calibration and would provide decision support to clinicians and increase vigilance for patients at high risk of postinduction hypotension during general anesthesia.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.