-
Can J Kidney Health Dis · Jan 2018
Prediction of Acute Kidney Injury With a Machine Learning Algorithm Using Electronic Health Record Data.
- Hamid Mohamadlou, Anna Lynn-Palevsky, Christopher Barton, Uli Chettipally, Lisa Shieh, Jacob Calvert, Nicholas R Saber, and Ritankar Das.
- Dascena, Inc, Hayward, CA, USA.
- Can J Kidney Health Dis. 2018 Jan 1; 5: 2054358118776326.
BackgroundA major problem in treating acute kidney injury (AKI) is that clinical criteria for recognition are markers of established kidney damage or impaired function; treatment before such damage manifests is desirable. Clinicians could intervene during what may be a crucial stage for preventing permanent kidney injury if patients with incipient AKI and those at high risk of developing AKI could be identified.ObjectiveIn this study, we evaluate a machine learning algorithm for early detection and prediction of AKI.DesignWe used a machine learning technique, boosted ensembles of decision trees, to train an AKI prediction tool on retrospective data taken from more than 300 000 inpatient encounters.SettingData were collected from inpatient wards at Stanford Medical Center and intensive care unit patients at Beth Israel Deaconess Medical Center.PatientsPatients older than the age of 18 whose hospital stays lasted between 5 and 1000 hours and who had at least one documented measurement of heart rate, respiratory rate, temperature, serum creatinine (SCr), and Glasgow Coma Scale (GCS).MeasurementsWe tested the algorithm's ability to detect AKI at onset and to predict AKI 12, 24, 48, and 72 hours before onset.MethodsWe tested AKI detection and prediction using the National Health Service (NHS) England AKI Algorithm as a gold standard. We additionally tested the algorithm's ability to detect AKI as defined by the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines. We compared the algorithm's 3-fold cross-validation performance to the Sequential Organ Failure Assessment (SOFA) score for AKI identification in terms of area under the receiver operating characteristic (AUROC).ResultsThe algorithm demonstrated high AUROC for detecting and predicting NHS-defined AKI at all tested time points. The algorithm achieves AUROC of 0.872 (95% confidence interval [CI], 0.867-0.878) for AKI detection at time of onset. For prediction 12 hours before onset, the algorithm achieves an AUROC of 0.800 (95% CI, 0.792-0.809). For 24-hour predictions, the algorithm achieves AUROC of 0.795 (95% CI, 0.785-0.804). For 48-hour and 72-hour predictions, the algorithm achieves AUROC values of 0.761 (95% CI, 0.753-0.768) and 0.728 (95% CI, 0.719-0.737), respectively.LimitationsBecause of the retrospective nature of this study, we cannot draw any conclusions about the impact the algorithm's predictions will have on patient outcomes in a clinical setting.ConclusionsThe results of these experiments suggest that a machine learning-based AKI prediction tool may offer important prognostic capabilities for determining which patients are likely to suffer AKI, potentially allowing clinicians to intervene before kidney damage manifests.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.