-
- Maarten van Iterson, Herman H H B M van Haagen, and Jelle J Goeman.
- Center for Human and Clinical Genetics, Leiden University Medical Center, The Netherlands. m.van_iterson.hg@lumc.nl
- Proteomics. 2012 Feb 1; 12 (4-5): 543-9.
AbstractBioinformatics is the field where computational methods from various domains have come together for analysis of biological data. Each domain has introduced its own specific jargon. However, in closely related domains, e.g. machine learning and statistics, concordant and discordant terminology occurs, the later can lead to confusion. This article aims to help solve the confusion of tongues arising from these two closely related domains, which are frequently used in bioinformatics. We provide a short summary of the most commonly applied machine learning and statistical approaches to data analysis in bioinformatics, i.e. classification and statistical hypothesis testing. We explain differences and similarities in common terminology used in various domains, such as precision, recall, sensitivity and true positive rate. This primer can serve as a guide to the terminology used in these fields.Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.