• Scand J Pain · Apr 2013

    Painful heat attenuates electrically induced muscle pain in men and women.

    • Maria Gullander, Stein Knardahl, and Dagfinn Matre.
    • Norwegian University of Life Sciences, Ås, Norway.
    • Scand J Pain. 2013 Apr 1; 4 (2): 103-108.

    AbstractAabstract Background and purpose Women exhibit higher prevalence of most painful disorders. Several explanations have been proposed for this discrepancy, one being that endogenous pain modulatory pathways, which affect incoming nociceptive signals, act differently in men and women. A less efficient pain inhibitory system has been proposed as a contributing factor to explain why women exhibit higher prevalence of most painful disorders. The present study determined whether muscle pain, induced experimentally by electrical stimulation, is inhibited by a painful heat stimulus. This conditioned pain modulation (CPM) paradigm was used to determine whether women show signs of reduced inhibition compared to men. Methods Forty self-reported healthy individuals (20 female, 20 male) participated in a cross-over design with painful and non-painful heat as a conditioning stimulus. Test stimuli were painful intramuscular electrical stimulation of the tibialis anterior muscle at two intensities; low (1.1 × pain threshold) and high (1.6 × pain threshold). Painful conditioning was contact heat (45-49 ° C) to the contralateral forearm. Nonpainful conditioning was contact heat at 35 °C. Ten test stimuli were delivered in three blocks (before, during and after conditioning) in two sessions (painful and non-painful conditioning). The women were tested during days 12-14 of the menstrual cycle. This interval corresponds to the ovulatory phase of the menstrual cycle, the interval during which women are reported to show the largest inhibitory effects. Results Test stimuli were rated significantly lower during painful conditioning, compared with before conditioning. This was found for both low and high test stimulus intensities. Anonspecific attenuation was seen during non-painful conditioning for the low test stimulus intensity. Test stimuli were rated significantly lower also 3 min after conditioning, compared with before conditioning. The inhibitory effects were not different between men and women. Similar findings were obtained also if six non-CPM-responders (subjects rating test stimuli higher during conditioning than before conditioning) were excluded. Conclusions and implications The present findings indicate that painful contact heat inhibits electrically induced muscle pain and that inhibition was not different between men and women, when women were tested in the interval 12-14 days after their last menstruation. Some inhibition of muscle pain was seen during non-painful conditioning, indicating that nonspecific inhibitory effects were triggered. Also the nonspecific inhibitory effects were similar in men and women.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.