• Shock · Oct 2019

    Cardiac Effects of Hyperoxia During Resuscitation from Hemorrhagic Shock in Swine.

    • Thomas Datzmann, Martin Wepler, Ulrich Wachter, Josef A Vogt, Oscar McCook, Tamara Merz, Enrico Calzia, Michael Gröger, Clair Hartmann, Pierre Asfar, Peter Radermacher, and Benedikt Lukas Nussbaum.
    • Institute of Anesthesiological Pathophysiology and Process Engineering.
    • Shock. 2019 Oct 1; 52 (4): e52-e59.

    AbstractHyperoxia (ventilation with FIO2 = 1.0) has vasoconstrictor properties, in particular in the coronary vascular bed, and, hence, may promote cardiac dysfunction. However, we previously showed that hyperoxia attenuated myocardial injury during resuscitation from hemorrhage in swine with coronary artery disease. Therefore, we tested the hypothesis whether hyperoxia would also mitigate myocardial injury and improve heart function in the absence of chronic cardiovascular comorbidity.After 3 h of hemorrhage (removal of 30% of the calculated blood volume and subsequent titration of mean arterial pressure to 40 mm Hg) 19 anesthetized, mechanically ventilated, and instrumented pigs received FIO2 = 0.3(control) or hyperoxia(FIO2 = 1.0) during the first 24 h. Before, at the end of and every 12 h after shock, hemodynamics, blood gases, metabolism, cytokines, and cardiac function (pulmonary artery thermodilution, left ventricular pressure-conductance catheterization) were recorded. At 48 h, cardiac tissue was harvested for western blotting, immunohistochemistry, and mitochondrial respiration.Except for higher left ventricular end-diastolic pressures at 24 h (hyperoxia 21 (17;24), control 17 (15;18) mm Hg; P = 0.046), hyperoxia affected neither left ventricular function cardiac injury (max. Troponin I at 12 h: hyperoxia:9 (6;23), control:17 (11;24) ng mL; P = 0.395), nor plasma cytokines (except for interleukin-1β: hyperoxia 10 (10;10) and 10 (10;10)/control 14 (10;22), 12 (10;15) pg mL, P = 0.023 and 0.021 at 12 and 24 h, respectively), oxidation and nitrosative stress, and mitochondrial respiration. However, hyperoxia decreased cardiac tissue three-nitrotyrosine formation (P < 0.001) and inducible nitric oxide synthase expression (P = 0.016). Ultimately, survival did not differ significantly either.In conclusion, in contrast to our previous study in swine with coronary artery disease, hyperoxia did not beneficially affect cardiac function or tissue injury in healthy swine, but was devoid of deleterious side effects.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.