• J Neuroimaging · Jan 2018

    Cerebral White Matter Maturation Patterns in Preterm Infants: An MRI T2 Relaxation Anisotropy and Diffusion Tensor Imaging Study.

    • Michael J Knight, Adam Smith-Collins, Sarah Newell, Mark Denbow, and Risto A Kauppinen.
    • School of Experimental Psychology, University of Bristol, UK.
    • J Neuroimaging. 2018 Jan 1; 28 (1): 86-94.

    Background And PurposePreterm birth is associated with worse neurodevelopmental outcome, but brain maturation in preterm infants is poorly characterized with standard methods. We evaluated white matter (WM) of infant brains at term-equivalent age, as a function of gestational age at birth, using multimodal magnetic resonance imaging (MRI).MethodsInfants born very preterm (<32 weeks gestation) and late preterm (33-36 weeks gestation) were scanned at 3 T at term-equivalent age using diffusion tensor imaging (DTI) and T2 relaxometry. MRI data were analyzed using tract-based spatial statistics, and anisotropy of T2 relaxation was also determined. Principal component analysis and linear discriminant analysis were applied to seek the variables best distinguishing very preterm and late preterm groups.ResultsAcross widespread regions of WM, T2 is longer in very preterm infants than in late preterm ones. These effects are more prevalent in regions of WM that myelinate earlier and faster. Similar effects are obtained from DTI, showing that fractional anisotropy (FA) is lower and radial diffusivity higher in the very preterm group, with a bias toward earlier myelinating regions. Discriminant analysis shows high sensitivity and specificity of combined T2 relaxometry and DTI for the detection of a distinct WM development pathway in very preterm infants. T2 relaxation is anisotropic, depending on the angle between WM fiber and magnetic field, and this effect is modulated by FA.ConclusionsCombined T2 relaxometry and DTI characterizes specific patterns of retarded WM maturation, at term equivalent age, in infants born very preterm relative to late preterm.Copyright © 2017 by the American Society of Neuroimaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.