• BMJ open · Apr 2018

    Using machine learning techniques to develop forecasting algorithms for postoperative complications: protocol for a retrospective study.

    • Bradley A Fritz, Yixin Chen, Teresa M Murray-Torres, Stephen Gregory, Ben Abdallah Arbi A Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, USA., Alex Kronzer, Sherry Lynn McKinnon, Thaddeus Budelier, Daniel L Helsten, Troy S Wildes, Anshuman Sharma, and Michael Simon Avidan.
    • Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, USA.
    • BMJ Open. 2018 Apr 10; 8 (4): e020124.

    IntroductionMortality and morbidity following surgery are pressing public health concerns in the USA. Traditional prediction models for postoperative adverse outcomes demonstrate good discrimination at the population level, but the ability to forecast an individual patient's trajectory in real time remains poor. We propose to apply machine learning techniques to perioperative time-series data to develop algorithms for predicting adverse perioperative outcomes.Methods And AnalysisThis study will include all adult patients who had surgery at our tertiary care hospital over a 4-year period. Patient history, laboratory values, minute-by-minute intraoperative vital signs and medications administered will be extracted from the electronic medical record. Outcomes will include in-hospital mortality, postoperative acute kidney injury and postoperative respiratory failure. Forecasting algorithms for each of these outcomes will be constructed using density-based logistic regression after employing a Nadaraya-Watson kernel density estimator. Time-series variables will be analysed using first and second-order feature extraction, shapelet methods and convolutional neural networks. The algorithms will be validated through measurement of precision and recall.Ethics And DisseminationThis study has been approved by the Human Research Protection Office at Washington University in St Louis. The successful development of these forecasting algorithms will allow perioperative healthcare clinicians to predict more accurately an individual patient's risk for specific adverse perioperative outcomes in real time. Knowledge of a patient's dynamic risk profile may allow clinicians to make targeted changes in the care plan that will alter the patient's outcome trajectory. This hypothesis will be tested in a future randomised controlled trial.© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…