-
Paediatric anaesthesia · Feb 2018
Observational StudyCharacterization of the functional near-infrared spectroscopy response to nociception in a pediatric population.
- Vanessa A Olbrecht, Yifei Jiang, Luigi Viola, Charlotte M Walter, Hanli Liu, and Charles D Kurth.
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Paediatr Anaesth. 2018 Feb 1; 28 (2): 103-111.
BackgroundNear-infrared spectroscopy can interrogate functional optical signal changes in regional brain oxygenation and blood volume to nociception analogous to functional magnetic resonance imaging.AimsThis exploratory study aimed to characterize the near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin from the brain in response to nociceptive stimulation of varying intensity and duration, and after analgesic and neuromuscular paralytic in a pediatric population.MethodsWe enrolled children 6 months-21 years during propofol sedation before surgery. The near-infrared spectroscopy sensor was placed on the forehead and nociception was produced from an electrical current applied to the wrist. We determined the near-infrared spectroscopy signal response to increasing current intensity and duration, and after fentanyl, sevoflurane, and neuromuscular paralytic. Heart rate and arm movement during electrical stimulation was also recorded. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin were calculated as optical density*time (area under curve).ResultsDuring electrical stimulation, nociception was evident: tachycardia and arm withdrawal was observed that disappeared after fentanyl and sevoflurane, whereas after paralytic, tachycardia persisted while arm withdrawal disappeared. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin increased during stimulation and decreased after stimulation; the areas under the curves were greater for stimulations 30 mA vs 15 mA (13.9 [5.6-22.2], P = .0021; 5.6 [0.8-10.5], P = .0254, and 19.8 [10.5-29.1], P = .0002 for HbO2 , Hb, and HbT , respectively), 50 Hz vs 1 Hz (17.2 [5.8-28.6], P = .0046; 7.5 [0.7-14.3], P = .0314, and 21.9 [4.2-39.6], P = .0177 for HbO2 , Hb, and HbT , respectively) and 45 seconds vs 15 seconds (16.3 [3.4-29.2], P = .0188 and 22.0 [7.5-36.5], P = .0075 for HbO2 and HbT , respectively); the areas under the curves were attenuated by analgesics but not by paralytic.ConclusionNear-infrared spectroscopy detected functional activation to nociception in a broad pediatric population. The near-infrared spectroscopy response appears to represent nociceptive processing because the signals increased with noxious stimulus intensity and duration, and were blocked by analgesics but not paralytics.© 2017 John Wiley & Sons Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.