• Exp Brain Res · Mar 2010

    Antinociception by motor cortex stimulation in the neuropathic rat: does the locus coeruleus play a role?

    • Hanna Viisanen and Antti Pertovaara.
    • Biomedicum Helsinki, Institute of Biomedicine/Physiology, POB 63, University of Helsinki, 00014, Helsinki, Finland.
    • Exp Brain Res. 2010 Mar 1; 201 (2): 283-96.

    AbstractWe studied whether stimulation of the primary motor cortex (M1) attenuates pain-related spinal withdrawal responses of neuropathic and healthy control rats, and whether the descending antinociceptive effect is relayed through the noradrenergic locus coeruleus (LC). The assessments of the noxious heat-evoked limb withdrawals reflecting spinal nociception and recordings of single LC units were performed in spinal nerve-ligated neuropathic and sham-operated control rats under light pentobarbital anesthesia. Electric stimulation of M1 produced equally strong spinal antinociception in neuropathic and control rats. Following microinjection into M1, a group I metabotropic glutamate receptor agonist (DHPG; 10 nmol) and a high (25 nmol) but not low (2.5 nmol) dose of glutamate slightly increased on-going discharge rates of LC neurons in neuropathic but not in control animals. Influence of electric stimulation of M1 on LC neurons was studied only in the neuropathic group, in which discharge rates of LC neurons were increased by electric M1 stimulation. Lidocaine block of the LC or block of descending noradrenergic influence by intrathecal administration of a alpha(2)-adrenoceptor antagonist failed to produce a significant attenuation of the spinal antinociceptive effect induced by electric M1 stimulation in the neuropathic or the sham group. The results indicate that stimulation of the rat M1 induces spinal antinociception in neuropathic as well as control conditions. While M1 stimulation may activate the LC, particularly in the neuropathic group, the contribution of coeruleospinal noradrenergic pathways may not be critical for the spinal antinociceptive effect induced by M1 stimulation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.