-
- Tsung-Yuan Tsai, Dimitris Dimitriou, Ming Han Lincoln Liow, Harry E Rubash, Guoan Li, and Young-Min Kwon.
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
- J Arthroplasty. 2016 May 1; 31 (5): 1096-101.
BackgroundComponent malalignment in unicompartmental knee arthroplasty (UKA) has been associated with contact stress concentration and poor clinical outcomes. However, there is a paucity of data regarding UKA component alignment and in vivo articular contact in weight-bearing position. This study aims to (1) quantify three-dimensional UKA component alignment and (2) evaluate the association between the component alignment and in vivo articular contact in standing position.MethodsSeventy-seven UKAs in 68 consecutive patients were imaged in standing position using a biplanar X-ray imaging acquisition system. The UKA models were imported into a virtual imaging environment and registered with component silhouette on X-ray image for determination of component position and contact location. Anatomic bony landmarks of the lower limb were digitized for quantification of the bone alignment.ResultsThe femoral component (FC) showed 1.6° ± 3.3° valgus, 6.5° ± 6.4° external rotation, and 2.4° ± 4.6° flexion. The tibial component (TC) showed 3.9° ± 4.5° varus, 4.4° ± 6.7° internal rotation, and 10.1° ± 4.6° tibial slope. The average contact point was located medially and posteriorly by 7.8 ± 7.6% and 0.7 ± 7.7% of TC dimensions to its center. Multiple regression analysis identified FC flexion as a significant variable affecting UKA anterior and/or posterior contact position (R = 0.549, P < .001).ConclusionThis study demonstrated the highest variability of UKA component positioning in axial plane rotation for FC and TC. The association between FC flexion and anterior contact position suggests accurate implant positioning may be important in optimizing in vivo UKA contact behavior. Further studies are required to gain understanding of the influence of axial rotation variability on in vivo UKA contact kinematics during functional activities.Copyright © 2016 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.