• J. Thorac. Cardiovasc. Surg. · Dec 2018

    Inhibition of microglial activation by minocycline reduced preoligodendrocyte injury in a neonatal rat brain slice model.

    • Junrong Huang, Gang Liu, Bowen Shi, Guochen Shi, Xiaomin He, Zhaohui Lu, Jinghao Zheng, Haibo Zhang, Huiwen Chen, and Zhongqun Zhu.
    • Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
    • J. Thorac. Cardiovasc. Surg. 2018 Dec 1; 156 (6): 2271-2280.

    BackgroundPeriventricular leukomalacia is a common white-matter injury after neonatal cardiac surgery; however, its potential cellular mechanism remains uncertain. There is limited study regarding periventricular leukomalacia treatment.MethodsA neonatal rat brain slice perfusion model was used for reproducing the condition of cardiopulmonary bypass, and oxygen glucose deprivation simulated circulatory arrest. Seven-day-old Sprague-Dawley rats were randomly divided into 7 groups: (1) control group with 36°C; (2) 60 minutes of oxygen glucose deprivation group on 15°C, 25°C, 36°C, respectively; and (3) 60 minutes of oxygen glucose deprivation group on 15°C, 25°C, 36°C, plus minocycline (10 μmol/L), respectively. Immunohistochemistry, Western blot, and inflammatory mediators were compared after the perfusion procedures in the different groups.ResultsThis neonatal rat brain slice perfusion with oxygen glucose deprivation model could replicate the pathophysiologic process and injury after cardiopulmonary bypass and hypothermic circulatory arrest. With the increase of oxygen glucose deprivation perfusion temperature, we found that both microglia activation and preoligodendrocyte loss increased. The application of minocycline can significantly inhibit microglial activation and preoligodendrocyte cells loss in the normothermic (36°C) and moderate hypothermia (25°C) oxygen glucose deprivation groups (P < .05), with accompanying significant decreasing microglial inflammatory productions; however, no significant improvement was found in the deep hypothermia (15°C) group.ConclusionsThe microglial activation may play a key role in preoligodendrocyte injury in the ex vivo neonatal rat brain slice perfusion and circulatory arrest model. Inhibition of microglial activation with minocycline may be an attractive target for white-matter protection during cardiopulmonary bypass and hypothermic circulatory arrest.Copyright © 2018. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.