• Am. J. Respir. Crit. Care Med. · Dec 2018

    Ambient Pollution-related Reprogramming of the Human Small Airway Epithelial Transcriptome.

    • Sarah L O'Beirne, Sushila A Shenoy, Jacqueline Salit, Yael Strulovici-Barel, Robert J Kaner, Sudha Visvanathan, Jay S Fine, Jason G Mezey, and Ronald G Crystal.
    • 1 Department of Genetic Medicine and.
    • Am. J. Respir. Crit. Care Med. 2018 Dec 1; 198 (11): 141314221413-1422.

    RationaleEpidemiologic studies have demonstrated that exposure to particulate matter ambient pollution has adverse effects on lung health, exacerbated by cigarette smoking. Particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) is among the most harmful urban pollutants and is closely linked to respiratory disease.ObjectivesBased on the knowledge that the small airway epithelium (SAE) plays a central role in the pathogenesis of smoking-related lung disease, we hypothesized that elevated PM2.5 levels are associated with dysregulation of SAE gene expression, which may contribute to the development of respiratory disease.MethodsFrom 2009 to 2012, healthy nonsmoker (n = 29) and smoker (n = 129) residents of New York City underwent bronchoscopy with SAE brushing (2.6 ± 1.3 samples/subject; total of 405 samples). SAE gene expression was assessed by Affymetrix HG-U133 Plus 2.0 microarray. New York City PM2.5 levels (Environmental Protection Agency data) were averaged for the 30 days before bronchoscopy. A linear mixed model was used to assess PM2.5-related gene dysregulation accounting for multiple clinical and methodologic variables.Measurements And Main ResultsThirty-day mean PM2.5 levels varied from 6.2 to 18 μg/m3. In nonsmokers, there was no dysregulation of SAE gene expression associated with ambient PM2.5 levels. In marked contrast, n = 219 genes were significantly dysregulated in association with PM2.5 levels in the SAE of smokers. Many of these genes relate to cell growth and transcription regulation. Interestingly, 11% of genes were mitochondria associated.ConclusionsPM2.5 exposure contributes to significant dysregulation of the SAE transcriptome of smokers, linking pollution and airway epithelial biology in the risk of development of respiratory disease in susceptible individuals.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.