• J Bone Joint Surg Am · Dec 1997

    The effect of fibular malreduction on contact pressures in an ankle fracture malunion model.

    • D B Thordarson, S Motamed, T Hedman, E Ebramzadeh, and S Bakshian.
    • Department of Orthopaedic Surgery, University of Southern California, Los Angeles 90033, USA.
    • J Bone Joint Surg Am. 1997 Dec 1; 79 (12): 1809-15.

    AbstractNine fresh-frozen cadaveric specimens were disarticulated through the knee, and the soft tissues, except for the interosseous ligaments and interosseous membrane, were removed to the level of the ankle. The subtalar joint was secured with screws in neutral position (approximately 5 degrees of valgus). Contact pressures in the tibiotalar joint were measured with use of low-grade pressure-sensitive film, which was placed through an anterior capsulotomy. For each measurement, 700 newtons of load was applied to the specimen for one minute. The film imprints were scanned, and the contact pressures were quantitated in nine equal quadrants over the talar dome. A fracture-displacement device was secured to the distal end of the fibula; the device allowed for individual or combined displacements consisting of shortening, lateral shift, and external rotation of the fibula. The ankle was maintained in neutral flexion. The ligamentous injury associated with a pronation-lateral rotation fracture of the ankle was simulated by dividing the deep fibers of the deltoid ligament, the anterior-inferior tibiofibular ligament, and the interosseous membrane to a point that was an average of fifty-three millimeters proximal to the ankle joint. Baseline contact area and contact pressure in the joint were determined, followed by measurements after two, four, and six millimeters of shortening of the fibula; after two, four, and six millimeters of lateral shift of the fibula; and after 5, 10, and 15 degrees of external rotation of the fibula. The three types of displacement were tested individually as well as in combination. The simulated deformities were found to cause a shift of the contact pressure to the mid-lateral and posterolateral quadrants of the talar dome, with pressures as high as 4.1 megapascals. A corresponding decrease in the contact pressures was noted in the medial quadrants of the talar dome. The highest pressures were recorded for maximum shortening of the fibula, the combination of maximum shortening and lateral shift, the combination of maximum shortening and external rotation, and the combination of maximum shortening, lateral shift, and external rotation. In general, increases in each displacement variable corresponded to increasing contact pressures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…