• Anesthesiology · Mar 2018

    Physiologic Evaluation of Ventilation Perfusion Mismatch and Respiratory Mechanics at Different Positive End-expiratory Pressure in Patients Undergoing Protective One-lung Ventilation.

    • Savino Spadaro, Salvatore Grasso, Dan Stieper Karbing, Alberto Fogagnolo, Marco Contoli, Giacomo Bollini, Riccardo Ragazzi, Gilda Cinnella, Marco Verri, Narciso Giorgio Cavallesco, Stephen Edward Rees, and Carlo Alberto Volta.
    • From the Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, Sant'Anna Hospital, Ferrara, Italy (S.S., A.F., G.B., R.R., M.V., N.G.C., C.A.V.); Department of Emergency and Organ Transplant, Aldo Moro University of Bari, Bari, Italy (S.G.); Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark (D.S.K., S.E.R.); Research Centre on Asthma and Chronic Obstructive Pulmonary Disease, Department of Medical Sciences, University of Ferrara, Ferrara, Italy (M.C.); and Department of Anesthesia and Intensive care, University of Foggia, Foggia, Italy (G.C.).
    • Anesthesiology. 2018 Mar 1; 128 (3): 531-538.

    BackgroundArterial oxygenation is often impaired during one-lung ventilation, due to both pulmonary shunt and atelectasis. The use of low tidal volume (VT) (5 ml/kg predicted body weight) in the context of a lung-protective approach exacerbates atelectasis. This study sought to determine the combined physiologic effects of positive end-expiratory pressure and low VT during one-lung ventilation.MethodsData from 41 patients studied during general anesthesia for thoracic surgery were collected and analyzed. Shunt fraction, high V/Q and respiratory mechanics were measured at positive end-expiratory pressure 0 cm H2O during bilateral lung ventilation and one-lung ventilation and, subsequently, during one-lung ventilation at 5 or 10 cm H2O of positive end-expiratory pressure. Shunt fraction and high V/Q were measured using variation of inspired oxygen fraction and measurement of respiratory gas concentration and arterial blood gas. The level of positive end-expiratory pressure was applied in random order and maintained for 15 min before measurements.ResultsDuring one-lung ventilation, increasing positive end-expiratory pressure from 0 cm H2O to 5 cm H2O and 10 cm H2O resulted in a shunt fraction decrease of 5% (0 to 11) and 11% (5 to 16), respectively (P < 0.001). The PaO2/FIO2 ratio increased significantly only at a positive end-expiratory pressure of 10 cm H2O (P < 0.001). Driving pressure decreased from 16 ± 3 cm H2O at a positive end-expiratory pressure of 0 cm H2O to 12 ± 3 cm H2O at a positive end-expiratory pressure of 10 cm H2O (P < 0.001). The high V/Q ratio did not change.ConclusionsDuring low VT one-lung ventilation, high positive end-expiratory pressure levels improve pulmonary function without increasing high V/Q and reduce driving pressure.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…