-
- Nicola Mackintosh, Marius Terblanche, Ritesh Maharaj, Andreas Xyrichis, Karen Franklin, Jamie Keddie, Emily Larkins, Anna Maslen, James Skinner, Samuel Newman, Joana Hiew De Sousa Magalhaes, and Jane Sandall.
- Division of Women's Health, Faculty of Life Sciences and Medicine, Women's Health Academic Centre, King's Health Partners, King's College London, 10th Floor North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK. nicola.mackintosh@kcl.ac.uk.
- Syst Rev. 2016 Oct 18; 5 (1): 176.
BackgroundTelemedicine applications aim to address variance in clinical outcomes and increase access to specialist expertise. Despite widespread implementation, there is little robust evidence about cost-effectiveness, clinical benefits, and impact on quality and safety of critical care telemedicine. The primary objective was to determine the impact of critical care telemedicine (with clinical decision support available 24/7) on intensive care unit (ICU) and hospital mortality and length of stay in adults and children. The secondary objectives included staff and patient experience, costs, protocol adherence, and adverse events.MethodsData sources included MEDLINE, EMBASE, CINAHL, Cochrane Library databases, Health Technology Assessment Database, Web of Science, OpenGrey, OpenDOAR, and the HMIC through to December 2015. Randomised controlled trials and quasi-experimental studies were eligible for inclusion. Eligible studies reported on differences between groups using the telemedicine intervention and standard care. Two review authors screened abstracts and assessed potentially eligible studies using Cochrane guidance.ResultsTwo controlled before-after studies met the inclusion criteria. Both were assessed as high risk of bias. Meta-analysis was not possible as we were unable to disaggregate data between the two studies. One study used a non-randomised stepped-wedge design in seven ICUs. Hospital mortality was the primary outcome which showed a reduction from 13.6 % (CI, 11.9-15.4 %) to 11.8 % (CI, 10.9-12.8 %) during the intervention period with an adjusted odds ratio (OR) of 0.40 (95 % CI, 0.31-0.52; p = .005). The second study used a non-randomised, unblinded, pre-/post-assessment of telemedicine interventions in 56 adult ICUs. Hospital mortality (primary outcome) reduced from 11 to 10 % (adjusted hazard ratio (HR) = 0.84; CI, 0.78-0.89; p = <.001).ConclusionsThis review highlights the poor methodological quality of most studies investigating critical care telemedicine. The results of the two included studies showed a reduction in hospital mortality in patients receiving the intervention. Further multi-site randomised controlled trials or quasi-experimental studies with accompanying process evaluations are urgently needed to determine effectiveness, implementation, and associated costs.Trial RegistrationPROSPERO CRD42014007406.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.