-
Journal of neurotrauma · Jan 2019
White Matter Anisotropy for Impact Simulation and Response Sampling in Traumatic Brain Injury.
- Wei Zhao and Songbai Ji.
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts.
- J. Neurotrauma. 2019 Jan 15; 36 (2): 250-263.
AbstractAdvanced neuroimaging provides new opportunities to enhance head injury models, including the incorporation of white matter (WM) structural anisotropy. Information from high-resolution neuroimaging, however, usually has to be "down-sampled" to match a typically coarse brain mesh. To understand how this mesh-image resolution mismatch affects impact simulation and subsequent response sampling, we compared three competing anisotropy implementations (using either voxels, tractography, or a multiscale submodeling) and two response sampling strategies (element-wise or tractography-based, using brain mesh or neuroimaging for region segmentation, respectively). Using the combination of high resolution options as a baseline, we studied how the choice in each individual category affected the resulting injury metrics. By simulating a recorded loss of consciousness head impact, we found that injury metrics including peak strain and injury susceptibility in the deep WM regions based on fiber strain, but not on maximum principal strain, were sensitive to the anisotropy implementation, response sampling, and region segmentation. Overall, it was recommended to use tractography for anisotropy implementation and response sampling, and to employ neuroimaging for region segmentation, because they led to more accurate injury metrics. Further refining mesh locally via submodeling was unnecessary. Brain strain responses were also parametrically found to be closer to that from minimum fiber reinforcement, consistent with the fact that the majority of WM had a rather high degree of fiber dispersion. Finally, the upgraded Worcester Head Injury Model incorporating WM anisotropy was successfully re-validated against cadaveric impacts and an in vivo head rotation ("good" to "excellent" validation with an average Correlation Analysis score of 0.437 and 0.509, respectively). These investigations may facilitate further continual development of head injury models to better study traumatic brain injury.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.