• Psychological services · Feb 2017

    Development and applications of the Veterans Health Administration's Stratification Tool for Opioid Risk Mitigation (STORM) to improve opioid safety and prevent overdose and suicide.

    • Elizabeth M Oliva, Thomas Bowe, Sara Tavakoli, Susana Martins, Eleanor T Lewis, Meenah Paik, Ilse Wiechers, Patricia Henderson, Michael Harvey, Tigran Avoundjian, Amanuel Medhanie, and Jodie A Trafton.
    • Veterans Affairs (VA) Program Evaluation and Resource Center, VA Office of Mental Health Operations.
    • Psychol Serv. 2017 Feb 1; 14 (1): 34-49.

    AbstractConcerns about opioid-related adverse events, including overdose, prompted the Veterans Health Administration (VHA) to launch an Opioid Safety Initiative and Overdose Education and Naloxone Distribution program. To mitigate risks associated with opioid prescribing, a holistic approach that takes into consideration both risk factors (e.g., dose, substance use disorders) and risk mitigation interventions (e.g., urine drug screening, psychosocial treatment) is needed. This article describes the Stratification Tool for Opioid Risk Mitigation (STORM), a tool developed in VHA that reflects this holistic approach and facilitates patient identification and monitoring. STORM prioritizes patients for review and intervention according to their modeled risk for overdose/suicide-related events and displays risk factors and risk mitigation interventions obtained from VHA electronic medical record (EMR)-data extracts. Patients' estimated risk is based on a predictive risk model developed using fiscal year 2010 (FY2010: 10/1/2009-9/30/2010) EMR-data extracts and mortality data among 1,135,601 VHA patients prescribed opioid analgesics to predict risk for an overdose/suicide-related event in FY2011 (2.1% experienced an event). Cross-validation was used to validate the model, with receiver operating characteristic curves for the training and test data sets performing well (>.80 area under the curve). The predictive risk model distinguished patients based on risk for overdose/suicide-related adverse events, allowing for identification of high-risk patients and enrichment of target populations of patients with greater safety concerns for proactive monitoring and application of risk mitigation interventions. Results suggest that clinical informatics can leverage EMR-extracted data to identify patients at-risk for overdose/suicide-related events and provide clinicians with actionable information to mitigate risk. (PsycINFO Database Record(c) 2017 APA, all rights reserved).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…